Why Teach Ultrasound?

Sonosorority on ultrasound teaching rounds: (left to right) Michelle Nasal, Grace Rodriguez, Jessica Everett, Erin Wendell, and Tatiana Thema, with Creagh T. Boulger, MD.

Early in my career, I recall my choice to pursue my academicniche in ultrasound and more specifically ultrasound education being questioned. “Why would you do that?” “How are you going to get promoted?” “This is just a fad!”. For a moment I paused wondering if I should heed this advice. Was I making a mistake? I am happy I did not dwell on that moment because I would not be where I am, I would not have gotten promoted, I would not have touched so many learners, met so many amazing people, and helped so many patients.

One of my first patients as a doctor illustrates why I teach ultrasound. I was a brand-new doctor maybe 10 days under my belt. I walked in the room of my patient. They were in clear discomfort, I was nervous. I pushed on their abdomen. Unsure, I walked out to my supervisors and said: “I think I have an acute abdomen in bed 10.” We paged surgery and were ordering other imaging when my now-mentor, Dave Bahner, suggested we do a FAST exam. This was before the ultrasound invasion in medical school and my only exposure to ultrasound was limited and in OB and the trauma bay. He immediately noted significant free fluid and presumed rupture of a neobladder. The patient went promptly to the OR. This opened my eyes and sparked the passion for ultrasound that has fueled my career. I could use this machine to look inside and help patients on the outside.

So why teach ultrasound and who should you teach?

I teach ultrasound because…

It enables me to bring 2-dimensional anatomy to life. One of my greatest joys is showing a new medical student, undergrad, or high school student their own heart beating right in front of them and see the awe in their eyes.

It makes complicated concepts simple. I recall the challenge in medical school of the preclinical years 1 and 2. Understanding systole, diastole, cardiac valves, and flow. On paper, these are complicated and merely rote memorization. Watching these events occur on ultrasound in real time and how they are altered by simple maneuvers such as Valsalva or squatting truly aids in full understanding of the concepts.

Ultrasound is always relevant. One of my favorite courses to teach is ‘The Approach to Undifferentiated Shock’. This is attended by all fourth-year medical students. By the fourth year in medical school, many students are distracted by interviews and matching and have already chosen their respective fields. I love this course because as a teacher, I get one last chance to show them the light, or rather sound, and how it could help them if they encounter a patient in shock. I ask each of them their field of choice and if they see ultrasound having a role in their career. Many will nod affirmatively to appease me but by the end of the course, they are asking if we can teach them more ultrasound before they graduate. Ultrasound helps me connect and let them know how we use ultrasound to understand the causes of shock and how to manage these patients. This ability to break down silos and demonstrate how useful it can be across many specialties that care for patients is one of my favorite aspects of teaching bedside ultrasound.

Innovation

Ultrasound is such an exciting new tool and developed into a new field. New probes, technology, and applications are always evolving and changing how we use it to care for patients.

Ultrasound education is equally as exciting and dynamic. Because of challenges such as limited curricular time and tight budgets we have gotten creative to teach ultrasound. Ultrasound education has led the way with new concepts such as remote instruction, flipped classroom, near-peer training, learning through modeling, and gaming.

Mentorship

I have been fortunate to be blessed with amazing mentors who have given me amazing opportunities. The ultrasound community is small and welcoming, as well as young, fresh, and innovative. One of the greatest joys of teaching ultrasound has been the relationships I have made. I have found wonderful mentors but also been able to be a mentor. To watch my students turn into fellowship directors, division heads, and national speakers has been one of the greatest rewards. I have seen that hard work, loving what you do, and helping others learn ultrasound is a winning strategy for me and possibly you too.

Clinical Excellence

I make myself endlessly available to my learners and that offer does not end at graduation. More so than any award I have ever gotten, the greatest accomplishments of my career are the notes, emails, and texts saying thank you: ultrasound saved my patient last night. Those clinical wins where a patient benefits from a bedside ultrasound make every late night of lecture prep worth it.

So, why teach ultrasound? Ultrasound is the future of medicine and medical education. Get involved!

Why do you teach ultrasound? What do you value most about teaching the next generation of ultrasound users? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Creagh Boulger, MD, RDMS, FACEP, is Assistant Professor, Assistant Director of Ultrasound, and Assistant Fellowship Director of Emergency Ultrasound at Ohio State University Wexner Medical Center.

Richard G. Barr, MD, the Journal of Ultrasound in Medicine’s New Editor-in-Chief

The American Institute of Ultrasound in Medicine (AIUM) is proud to announce that Richard G. Barr, MD, PhD, FAIUM, FSRU, FACR, is the new editor-in-chief of the Journal of Ultrasound in Medicine (JUM). Dr Barr’s tenure as editor-in-chief officially began January 1, 2019.

Barr

Congratulations on your new role as JUM editor‑in‑chief, Dr Barr.

A regular contributor to, and reviewer for, the JUM, Dr Barr has a diverse background that is well suited for the journal’s continued growth. He is a board-certified radiologist and PhD chemist who currently serves as assistant chairman of the Department of Radiology at Northside Medical Center and as president of Radiology Consultants Inc. In addition, Dr Barr is a professor of radiology at Northeastern Ohio Medical University.

Dr Barr has already instituted some changes to the journal to help with the increased submission rate: he has increased the number of deputy editors from 3 to 5. Dr Barr has selected Michael Blaivas, MD, FAIUM, and Andrej Lyshchik, MD, PhD, to join Flemming Forsberg, PhD, FAIUM, Wesley Lee, MD, FAIUM, and Mark Lockhart, MD, FAIUM, as his deputy editors. Dr Barr has also stated that at present, the JUM will be accepting the same number of articles, but they are discussing the possibility of online-only articles as the number of submissions continues to increase.

An additional change coming to the JUM is that invitations will be sent to experts inviting them to write and submit articles reviewing topics of interest for JUM readers. The topics may be in areas of controversy or reviewing how to image an organ, etc.

Dr Barr is a fellow of the AIUM, Society of Radiologists in Ultrasound, and American College of Radiology, and his interests include breast imaging, contrast-enhanced ultrasound, and elastography. He has published more than 100 scientific articles and has given more than 300 talks around the world. He received a 2017 Radiological Society of North America Honored Educator Award and Aunt Minnie named him a semifinalist for the most influential radiology researcher in 2017.

“I look forward to serving as editor-in-chief for the JUM,” said Barr. “My predecessors have done an excellent job creating an international journal for all ultrasound subspecialties. I hope to continue this great work while increasing the readership and quality of the content.”

Do you want to know more about the JUM? Visit the Journal of Ultrasound in Medicine online, and if you have any comments, add them below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Richard G. Barr, MD, PhD, FAIUM, FSRU, FACR, is the assistant chairman of the Department of Radiology at Northside Medical Center, and president of Radiology Consultants Inc, both in Ohio. In addition, Dr Barr is a professor of radiology at Northeastern Ohio Medical University.

Training and Integrating Sonographers via Dedicated Preceptors

Hiring new staff members is risky business. Despite all the resources invested in identifying and evaluating qualified candidates, there’s no guarantee they’ll be a good long-term fit for the department. As new staff members begin to settle into a new job, there are a variety of reasons why they might ultimately leave the position. Many of these reasons can be traced back to deficiencies in orientation and training programs. With this in mind, it is of the utmost importance to invest appropriately in the onboarding process. A successful onboarding and training program provides benefits to the candidate and the organization.IMG_2125

My experience with these processes comes primarily from my current position as the Ultrasound Educator at St. David’s North Austin Medical Center in Austin, Texas. A huge portion of our sonographers are hired and contracted to maternal-fetal medicine (MFM) clinics around the Austin area; working for Austin Maternal-Fetal Medicine. Expectations for these sonographers are high. They perform all ultrasound examinations common to maternal-fetal medicine practice, including fetal echocardiography and diagnostic 3D/4D techniques. The scarcity of qualified candidates means that we often hire candidates from out of state, and integration to the department and community are among our primary concerns; having a structured training program helps with that.

New employees spend their first 2 days on the job attending facility orientation. Their third day of work is their first day in the MFM department. They’ll meet with leaders and physicians, and tour all relevant areas. In addition, I spend some time with them reviewing the training process and setting expectations. At this time, we pair them with a Sonographer Preceptor. The preceptor/trainee assignment is, of course, subject to change, but we try to limit this as part of the goal is to provide some stability and consistency during the training period.

The standard training period is 3 months in duration, although, we have extended training in some cases up to 6 months. This period may look different for various candidates based on their prior experience level. However, there are several characteristics that remain fixed:

1. One-on-one work with a preceptor

The Sonographer Preceptor is expected to directly observe while offering real-time feedback, every part of the trainees workday. This level of intensity may only be reduced after consultation with the Ultrasound Educator.

2. Weekly preceptor feedback report

This weekly report is filled out by the Preceptor and reviewed with the trainee. They review things that are working well and also plan which tasks need additional focus for the following week.

3. Image review with the Ultrasound Educator

On a weekly or biweekly basis, the trainee will meet with the Ultrasound Educator to review the Preceptor feedback report and review a selection of examinations from the prior week.

4. Didactic and written material for review

Each candidate is supplied with protocols, American Institute of Ultrasound in Medicine (AIUM) guidelines, review articles, and some pre-recorded lectures that cover essential quality standards and approaches for the department.

This high-touch training period helps to ensure that we have a strong understanding of the progress being achieved and can quickly adjust if we do not see steady growth.

Many people will recognize that it takes years to develop strong, comprehensive skills, in the performance of MFM ultrasound examinations. So what can we expect to accomplish in only 3 to 6 months? Upon completion of the training period, the sonographer should be able to:

  1. Complete normal fetal anatomic surveys, fetal echocardiograms, and other examinations in non-obese patients, demonstrating an understanding of proper technique, measurements, and optimization.
  2. Exercise professional discernment by getting help when their own efforts do not produce the answers or quality they expect.

These two goals may initially appear to be overly simplistic, but they work together beautifully in the transition out of the training period and into independent performance. Completion of normal (relatively easy) examinations proves that they understand the target. They understand what normal looks like and the essential techniques involved. The second point is key as it gives department leadership the confidence to allow them to work independently, because we know that they understand what good enough is, and we know that they have the resources they need in order to help them when they cannot meet expectations on their own. This is an important skill that never expires. This is relevant for sonographers, physicians, and other health care practitioners throughout their careers. Knowing when you’ve hit your limit and when to seek additional counsel is key to providing the best care to our patients (regardless of one’s particular level of expertise).

These two benchmarks, along with ongoing quality assurance efforts, help give us confidence in our team even as they continue to grow their individual skills and proficiencies over the coming years.

A note on Preceptor selection

Key to the success of this process is the selection of Sonographer Preceptors. These team members fill two distinct (individually important) roles: technical trainer and social integrator. With that in mind, selection of the individuals who fill this role is very important. Social characteristics we look for are warmth, kindness, extraversion, and the tendency to be inclusive. Technical expertise is evaluated based on history, quality assurance, physician feedback, and ability to evaluate and explain abnormal cases.

Full-time training in a one-on-one environment for 3 months or more at a time can be emotionally and mentally exhausting (even if rewarding). With this in mind, we try to maintain several Preceptors on our team so that these sonographers are able to work independently for extended periods between training new employees.

The social and integrative aspects of our Preceptor Program are not formally defined, yet the benefits are clearly evident. We see that our new employees make strong connections with their preceptors and other team members, frequently having lunch together and engaging in other extracurricular activities during time off.

It is important to point out that preceptors should typically be individual team members—not leads, supervisors, or managers. These formal leaders have other administrative duties that will inevitably get in the way of the one-on-one, full-time training involved in a preceptorship. Of course, leads, supervisors, and educators, may set aside time for some training of new hires, and this is certainly beneficial. For example, in our departments, I frequently set aside time to work with new hires or existing employees on specific skills such as 3D/4D, fetal echocardiography, or abnormal cases. Sonographers enjoy these sessions and benefit from them, but that does not replace the benefit of having a dedicated preceptor.

People don’t stay in jobs where they feel disconnected from the culture and community. This training program, with assigned preceptors, helps to meet the human need for connection in addition to building and verifying technical skills that are necessary for success.

For additional reading:
https://www.forbes.com/sites/forbeshumanresourcescouncil/2017/09/21/seven-ways-to-integrate-new-hires-and-make-them-feel-welcome-from-the-first-day/#1282eff640f6
https://www.thebalancecareers.com/employee-orientation-keeping-new-employees-on-board-1919035
https://trainingindustry.com/blog/performance-management/dont-ignore-training-when-onboarding-new-employees/

Does your practice have a mentor program for sonographers? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community.

Connect

Will Lindsley, RDMS (FE, OBGYN, AB), RVT, is an Ultrasound Educator in Maternal-Fetal Medicine and Fetal Echocardiography in Austin, TX.

Ultrasound at the Zoo

Zoo medicine is quite the paradox. In one way, zoo veterinarians are specialists in that what we do daily; it is very unique and specialized and there are few licensed veterinarians that are employed as full-time clinicians in zoological parks. On the contrary, zoo veterinarians are also the ultimate general practitioners as our patients include everything from invertebrates to great apes and elephants (and all life forms in-between)… and for this wide variety of patients, we attempt to be their pediatrician, surgeon, dermatologist, cardiologist, radiologist, etc. I am fortunate to be the Senior Staff Veterinarian at the Louisville Zoo in Louisville, Kentucky.

In terms of imaging modalities, most zoo hospitals are equipped with plain radiography (film or digital) and have some ultrasound capabilities. A few of the larger zoos in the country have computed tomography (CT) in their on-site hospitals. In Louisville, when one of our patients requires advanced imaging, we make arrangements with local facilities with CT or MRI capabilities.

For ultrasound imaging, we have a portable Sonosite M-Turbo unit with both a curvilinear, 5-2 MHz transducer for primarily transabdominal imaging, and a linear array, 10-5 MHz transducer for primarily transrectal imaging. In addition, we have several donated large rolling Phillips Sonos units with an assortment of probes for both echocardiography and transabdominal imaging. One remains in the Zoo’s Animal Health Center and others are stored and used in animal areas for pregnancy diagnosis, echocardiograms on awake gorillas (through the mesh barrier), or just training/conditioning animals for awake ultrasound exams.

Zoo animals may present unique challenges when ultrasound imaging transcutaneously. In the case of fish and amphibians, imaging through a water bath (without even touching the patient!) can be very effective and noninvasive. The rough scaly skin of some reptiles makes a warm water bath similarly effective as a conductive medium for imaging snakes and lizards. Birds are not often examined via ultrasound because of the extensive respiratory (air sac) system they possess that interferes with the sound waves. For mammals, different species present different challenges. Many mammal species are thickly furred necessitating clipping of hair to establish good contact between the transducer and the skin. For transabdominal imaging, some species are very gassy (hippos, gorillas), which may complicate diagnostic imaging. Large or dangerous mammals that are examined awake via training need to be conditioned to present the body part of interest (chest, abdomen) at the barrier mesh and trust their trainer/keeper to allow contact with the probe. Often the greatest hurdle is habituating the animal to the ultrasound gel! When performing transabdominal imaging in our pregnant African elephant cow, rather than go through gallons of ultrasound gel smeared on her flank to fill in all the cracks and crevices in her thick skin, we run water from a hose just above wherever the transducer is placed.

DSC_4176

As general practitioners, zoo veterinarians have variable amounts of training in ultrasonography. We strive to do the best we can and are constantly learning, but the high variability in our daily tasks makes becoming an expert in ultrasound very difficult. So “it takes a village,” and we will regularly utilize specialists in our community to assist us in providing the best medical care for our patients. If I have a zebra or related species that requires a reproductive ultrasound exam, we will reach out to a local equine veterinarian that can apply their expertise in horses to a related species. Great apes have a high incidence of heart disease so whenever a gorilla or orangutan is anesthetized for an exam, part of the comprehensive care they receive is an echocardiogram by a human sonographer. Female great apes may get attention from our volunteer gynecologic sonographer as part of a reproductive evaluation. If the ultrasound exam is on a sea lion, wolf, or bear, I may contact a veterinary radiologist or veterinary internist competent in ultrasonography to assist.

In summary, ultrasonography represents a valuable, noninvasive, diagnostic tool for the zoo veterinarian.

Have you ever performed an ultrasound examination at a zoo? What was your experience? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Zoli Gyimesi, DVM, is the Senior Veterinarian at the Louisville Zoo in Louisville, Kentucky.

Evidence-Based Sonology: Changing the Practice of POCUS

Let’s say you are working in a busy emergency department. You get a call that a patient is being brought in by ambulance in cardiac arrest. You quickly assemble your team, assign roles, and discuss the plan—just in time for the patient to arrive. A paramedic performs one-arm compressions on an elderly man, pale yellow–his mouth stented open with a laryngeal mask airway. Your swarm of providers descends upon the patient, performing their jobs simultaneously in perfect concert. Airway, ventilations, rhythm checks, epinephrine: everything is running smoothly, but the patient is in pulseless electrical activity. During a rhythm check, someone looks at the heart with ultrasound. You glance at the screen and see a blurry subcostal cardiac view. You can barely make out the pericardium, but you see a weak contraction of the ventricles; there’s still no pulse. Compressions are quickly resumed. You consider all of the information – what are the chances this patient will survive? Should we keep going? Should I place a transesophageal probe? Wait, do I even have one of those?! Is ultrasound enough evidence to determine if further efforts are futile? Amidst your thoughts you hear a loud and eager call out: “I got a pulse!”. The team buzzes again – blood pressure, electrocardiogram, labs, vasopressors, cooling. You wonder, “Why did I even do that ultrasound? Is there any evidence it helps?”.

The difficulty encountered in this scenario is one that occurs countless times across the world’s hospitals each day. Point-of-care ultrasound (POCUS) has exploded off the shelves over the past decade. It has been borrowed from the hands of sonographers and cardiologists and made available to anyone who can afford a machine (training course optional). Overall, this has been a remarkably positive movement. Safer procedures, faster diagnoses, and sometimes a replacement for more potentially harmful imaging modalities. However, it is not without dangers. Those who use it aren’t always looking for the evidence for POCUS, as if it is somehow outside of the requirement for evidence. Others might not use this modality when it is indicated, ignoring the evidence that supports the use of POCUS. Both practices are unsafe. This is a big problem…but it’s one we can fix with the concept of evidence-based sonology.

Practicing based on the best available evidence has been a cornerstone of medicine since its advent; however, only more recently has it seen a visible resurgence. Now that it is in vogue there are physicians who are evidence-based medicine (EBM) specialists, there are EBM blogs and EBM courses. We teach our learners EBM principles and practices. So why has POCUS almost eluded this trend? Why would the evidence for POCUS not be examined with the same perspicacity as resuscitative endovascular balloon occlusion of the aorta (REBOA) in the emergency department, for example? I have some theories. In the early days, POCUS was practiced by a few champions with a dream who understood how POCUS could revolutionize practice. However, ultrasound equipment was not yet widely available. This limited initial studies to case reports and case series on new uses, touting primarily theoretical benefits to patients. As anyone who has used ultrasound knows, this tool holds a powerful allure by allowing its user to magically look into the body and directly visualize physiology and pathology. It is easy to imagine that after a while you build up a confidence; when you see something it must really be there. In a sense, the rapid outbreak of ultrasound use and the ever-expanding list of applications outran the available evidence basis.

A review of a subset of ultrasound-related abstracts showed that there is now increasing research, although most of it would be classified as quasi-experimental, which may not be enough to inform practice.1 But the times, they are a’ changin’. Now ultrasound is ubiquitous, at least at most academic centers, in emergency departments, ICUs, and other places that care for the acutely ill. Therefore, the body of literature is growing, and now we just have to pay attention to it. Enter evidence-based sonology (EBS).

Your first question is probably – sonology? What’s that? Did he just misspell sonography? No. Sonology is a term that implies an expertise in the entire spectrum of POCUS. Not only the acquisition (the “-graphy”) of the images, but additionally the indications for performing it, the interpretation, and the subsequent appropriate medical decision making.2 This is important because the evidence for this modality could fall apart at any one of these levels, so practitioners must be attuned to the hurdles of each step. Your second question probably is, isn’t this just EBM? Of course! But it is something that we could improve, and therefore we need to rebrand this practice to continue teaching it as a concept to anyone that uses POCUS. There are several reasons why this is important. As POCUS becomes more integrated into medical practice, it is important that we are all on the same page. Research helps us understand the benefits and limits of this tool for each application. It helps us to know the best time to use the tool, how accurate it is when we use it, how it affects patients when we use it, and potential harms associated with it.EBS Graphic

So where do we go from here? There are 3 main ways you can practice EBS:

  1. Know the evidence
  2. Model the evidence
  3. Make the evidence (AKA perform research)

As far as knowing the evidence, this is nothing new for anyone practicing in a medical field. You know how to get a hold of journals. These days it’s easier than ever. You can even use social media, podcasts, and blogs to further distill the information for you. Just make sure you read the original evidence yourself and develop your own decisions about how it will change your practice. Secondly, you have to actually implement what you learn. Obviously, not all research articles are practice-changing, but many will at least add something to your understanding of POCUS in clinical practice. For example, in the aforementioned case of cardiac arrest, recent literature could have informed many steps of using POCUS. Cardiac activity on ultrasound has an odds ratio of 3.6 for survival to admission.3 Patient’s in PEA with cardiac activity on POCUS might benefit from continuous adrenergics instead of standard ACLS.4 Furthermore, an understanding that there is the risk of misdiagnosis of cardiac standstill and the risk of delaying chest compressions, might make you pay closer attention to these details during use of POCUS.5,6 Practicing with this evidence is not only the safest practice, but for those at teaching institutions, it can help create a newer generation of EBS followers. Lastly, make the evidence. Do the research. If you have a question, go find the answer. Collaboration is easier now that ultrasound is more widespread, as is evidenced by more multi-center trials.7-9 Talk about research ideas at national meetings and consider research groups for important questions.

There is now a greater evidence basis for POCUS than ever before. No longer are we restricted to a few case reports and our own intuition. We have randomized controlled trials; we have meta-analyses; we have real patient-centered outcomes. Know the evidence, model the evidence, and make the evidence. These are simple practices that we need to support for the sake of our patients. Now it’s up to you. Will you start practicing EBS? Think of creative ways to begin promoting this concept today.

References:

  1. Prats MI, Bahner DP, Panchal AR, et al. Documenting the growth of ultrasound research in emergency medicine through a bibliometric analysis of accepted academic conference abstracts. [published online ahead of print April 15, 2018]. J Ultrasound Med. doi.org/10.1002/jum.14634.
  2. Bahner DP, Hughes D, Royall NA. I-AIM: a novel model for teaching and performing focused sonography. J Ultrasound Med. 2012; 31:295–300.
  3. Gaspari R, Weekes A, Adhikari S, et al. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016; 109:33–39.
  4. Gaspari R, Weekes A, Adhikari S, et al. A retrospective study of pulseless electrical activity, bedside ultrasound identifies interventions during resuscitation associated with improved survival to hospital admission. A REASON Study. Resuscitation. 2017; 120:103–107.
  5. Huis In ‘t Veld MA, Allison MG, Bostick DS, et al. Ultrasound use during cardiopulmonary resuscitation is associated with delays in chest compressions. Resuscitation. 2017; 119:95–98.
  6. Hu K, Gupta N, Teran F, Saul T, Nelson BP, Andrus P. Variability in Interpretation of Cardiac Standstill Among Physician Sonographers. Ann Emerg Med. 2018; 71:193–198.
  7. Smith-Bindman R, Aubin C, Bailitz J, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med. 2014; 371:1100–1110.
  8. Atkinson PR, Milne J, Diegelmann L, et al. Does point-of-care ultrasonography improve clinical outcomes in emergency department patients with undifferentiated hypotension? An International Randomized Controlled Trial From the SHoC-ED Investigators. Ann Emerg Med. 2018; 72:478–489.
  9. Gaspari R, Weekes A, Adhikari S, et al. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016; 109:33–39.

Do you already practice evidence-based sonology? If not, will you start?  Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Michael Prats, MD, is currently Assistant Ultrasound Director and Director of Ultrasound Research in the Department of Emergency Medicine at the Ohio State University Wexner Medical Center. He is the founder of the Ultrasound G.E.L. Podcast that reviews recent articles in point of care ultrasound. Follow him on Twitter by his handle @PratsEM or visit ultrasoundgel.org.

Exploring the Potential of Ultrasound for Endometriosis

Endometriosis is a benign and chronic condition that can cause women to experience pain and fertility problems. For a long time, and to an extent still today, surgery is required to diagnose the disease. However, in the hands of an expert, a transvaginal ultrasound can accurately map deep endometriotic nodules and identify pouch of Douglas obliteration in a noninvasive fashion (Figure 1). Though this statement exhibits optimism in the effort to minimize the use of invasive surgery for diagnostic purposes, there are a few limitations with ultrasound in this scenario.

Leonardi Fig 1

Figure 1: Ultrasound depiction of bowel deep endometriosis and negative sliding sign (can only be noted with dynamic movements) (left) and laparoscopic depiction of bowel deep endometriosis and obliterated pouch of Douglas.

This blog post will attempt to highlight a few key issues with ultrasound’s potential in the realm of endometriosis. We also encourage your comments below on how you feel about ultrasound for endometriosis. Ultimately, we must all be critical of what can and cannot be achieved with ultrasound to ensure appropriate day-to-day clinical practice. This then also allows us to pursue ongoing cutting-edge research endeavors.Leonardi

Our first limitation is in the definition of the word, “expert.”  Thus far, one might attach the term “expert” to those responsible for the bulk of the literature on ultrasound for endometriosis. Certainly, in the view of these academics, ultrasound can see much more endometriosis than previously thought. The belief in the value of ultrasound and expertise in scanning/interpreting scans may trickle down the typical training ladder to fellows, residents, and sonographers. But is there any formal teaching—didactic or tactile? Is there any formal assessment of skill to suggest a minimum level of competency? Is there, at this time, even an understanding of how to evaluate a trainees’ learning curve of endometriosis ultrasound? What is to there to stop an individual from claiming competency when ultrasound for endometriosis is still in its infancy? One concern with pseudo-experts is that they may actually impede the advancement of endometriosis ultrasound integration because surgeons do not verify their findings intraoperatively, leading to skepticism.

Another big problem with the current potential for noninvasive ultrasound diagnosis of endometriosis is the inability to visualize superficial endometriosis, the mildest form of the disease. In surgery, deposits of superficial endometriosis are generally small, only a few millimeters in width and depth, and discolored (Figure 2). They sometimes cause adhesions to form between structures, such as the ovaries and the pelvic sidewall or uterosacral ligament. Thus far, no one has been able to directly identify superficial endometriosis deposits on ultrasound. However, soft markers on ultrasound, such as ovarian immobility and site-specific tenderness (ie, the ability to elicit pain with the pressure of the transvaginal probe during the scan) may hold some secrets to the diagnosis of this enigmatic form of the disease. Until further research supports the routine use of these components in ultrasound for endometriosis, the superficial disease remains a surgical, and therefore invasive, diagnosis.

Condous and Leonardi Fig 2

Figure 2: Laparoscopic depiction of small superficial endometriosis deposit.

Despite these limitations and others not highlighted here, the ability to directly visualize the more severe forms of the disease (ie, ovarian endometriomas, deep endometriosis of the bowel, and pouch of Douglas obliteration) has led to two very clear and significant benefits. One, the patient may be able to receive a diagnosis of disease in a noninvasive fashion, which may guide treatment. Second, if surgery is elected as the treatment of choice, surgeons can prepare. If severe disease is noted on a scan, surgeons can anticipate advanced level surgery, which may necessitate skill from a minimally invasive gynecologic surgeon and/or colorectal surgeon. If no disease is identified on a scan, there will be superficial endometriosis or no disease at all in surgery.

Overall, we are at a much better place right now than we have ever been when it comes to ultrasound for endometriosis. There are still limits that must be addressed, many of which are actively being investigated by dedicated teams around the world. This blog commentary does not attempt to offer solutions to the obstacles highlighted. However, please feel free to comment below if you have any thoughts on an approach to these, or other, limitations.

Have you tried ultrasound for endometriosis? What is your experience with ultrasound and endometriosis? What are your thoughts on the limitations of ultrasound for endometriosis? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Mathew Leonardi, MD, FRCSC, is an Honorary Lecturer in the Department of Obstetrics and Gynaecology and PhD student at the Nepean Clinical School, University of Sydney, under the supervision of Associate Professor George Condous. His Twitter handle is @mathewleonardi

From Sonographer to Ultrasound Practitioner: My Career Journey

I have been a sonographer for 18 years, and this year I was awarded Distinguished Sonographer at the 2018 AIUM Annual Convention. I can say without reservation that it is the biggest career honor that I have ever received and a moment that I will never forget. My path to becoming an Ultrasound Practitioner with a faculty appointment in the Department of Reproductive Medicine at UC San Diego has been rewarding, but it has not been easy. To be honest, I wasn’t always sure that I wanted to be a sonographer for more than a few years. I remember asking myself: Is this career as a sonographer enough or should I push myself further and go back to medical school? I have an incredible husband (who is also a sonographer) and he would have supported any choice I made, but ultimately – I decided not to pursue medical school. Even though I made that choice, I also told myself that there was nothing stopping me from learning as much as I could—my degree would not limit my potential and would not be what defines me.tantonheadshotblog

Since then, I have been studying the fetal heart A LOT. I enjoy all aspects of Maternal-Fetal Medicine (MFM) ultrasound, but the heart has always been an area of fascination for me. I love that it is both dynamic and complex, and, in my opinion, the most challenging aspect of fetal ultrasound. I have taken every opportunity to learn as much as I can from the incredible mentors that I have had the privilege of working with over the years. To this day, I am still learning, and I am amazed at all of the details we can see in these tiny little hearts! I eventually got the opportunity to cross train in pediatric echo and I jumped at that chance as well. I really enjoy being a part of a team of providers that can help the families affected by congenital heart disease.

I am, or I guess I should say I used to be, terrified of public speaking. I am proud of myself for overcoming this fear. Being in an academic center, I was used to teaching one on one, but it was about 8 years ago when I really pushed myself out of my comfort zone by lecturing to larger groups in the San Diego community. Putting together lectures can be time-consuming, difficult, and even stressful. I have spent many hours on weekends and evenings working on them, but I have also learned so much in the process. I started by speaking at local societies and hospitals, but over the years I have progressed and now I am proud to be invited to lecture at AIUM, SMFM, and other CME events around the country. Overcoming my fear of public speaking has been a huge stepping stone in my career and I love representing the sonographer voice on a larger platform.

So, how did I become a Practitioner with a faculty appointment?

I had a vision of how an Ultrasound Practitioner could function in our department. After all, by that point in my career, I was a seasoned MFM sonographer with 10 years of experience and I was still incredibly driven to learn and grow. I was keen to expand my skill set to function as a mid-level provider. Ultrasound Practitioner is not a new concept; SDMS had proposed a working model for an Ultrasound Practitioner in 2001. Dr. Beryl Benacerraf, among others, had already been successfully using an Ultrasound Practitioner for years. But working in a large academic center – my vision took years to bring to reality. I knew it would never happen if I didn’t continue to push for it. Along the way, I struggled, I questioned myself, I got overwhelmed, but I never gave up. I also had the support of some key physicians who believed in me. Their support was crucial to my eventual success.

I have now been an Ultrasound Practitioner for 6 years and as our department has grown to 8 ultrasound rooms, my role has expanded. Some of my responsibilities include: checking sonographers’ cases for quality and completeness, directing sonographers to get more images, obtaining images on difficult or complex cases, deeming the exam complete, writing preliminary reports, and discussing routine sonographic findings with patients. This working model frees up the physicians to spend more time with patients with abnormal findings and also allows the sonographers to keep moving with their schedules while ensuring quality patient care. Of course, this is only a snapshot of my day to day work, I still perform many of the fetal echocardiograms. I love to scan and I wouldn’t have it any other way.

My path to becoming a faculty member in the Department of Reproductive Medicine at UC San Diego was similar to my journey to becoming an Ultrasound Practitioner: it took time, lecturing nationally as well as teaching locally, coauthoring research papers and once again, having mentors who supported my appointment.

So, when people ask me about my success, I tell them it is because of hard work, persistence, believing in myself, and having mentors who believe in me too. My advice to sonographers is to know how important your role is; you are not “just a sonographer.” You should always keep learning, take pride in your work, and don’t be intimidated by the hierarchy of medicine. Our voice is crucial to the care of our patients, and that is really what matters.

Benacerraf BR, Bromley BS, Shipp TD, et al. The making of an advanced practice sonographer. J. Ultrasound Med 2003; 22:865–867.

Lockhart ME, Robbin ML, Berland LL, Smith JK, Canon CL, Stanley RJ. The sonographic practitioner: piece to the radiologist shortage puzzle. J Ultrasound in Med 2003; 22:861–864.

Bude RO, Fatchett AS, Lechtanski RT. The Use of Additionally Trained Sonographers as Ultrasound Practitioners. J Ultrasound Med 2006; 25:321–327

Society of Diagnostic Medical Sonography. Ultrasound Practitioner master’s degree curriculum and questionnaire: response by the SDMS membership. J Diagn Med Sonography 2001; 17:154–161.

How has ultrasound shaped your career? If you are an Ultrasound Practitioner, how did you get there? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Tracy Anton, BS, RDMS, RDCS, FAIUM, is an Ultrasound Practitioner with a faculty appointment in the Department of Reproductive Medicine at University of California, San Diego.