Ultrasound at the Zoo

Zoo medicine is quite the paradox. In one way, zoo veterinarians are specialists in that what we do daily; it is very unique and specialized and there are few licensed veterinarians that are employed as full-time clinicians in zoological parks. On the contrary, zoo veterinarians are also the ultimate general practitioners as our patients include everything from invertebrates to great apes and elephants (and all life forms in-between)… and for this wide variety of patients, we attempt to be their pediatrician, surgeon, dermatologist, cardiologist, radiologist, etc. I am fortunate to be the Senior Staff Veterinarian at the Louisville Zoo in Louisville, Kentucky.

In terms of imaging modalities, most zoo hospitals are equipped with plain radiography (film or digital) and have some ultrasound capabilities. A few of the larger zoos in the country have computed tomography (CT) in their on-site hospitals. In Louisville, when one of our patients requires advanced imaging, we make arrangements with local facilities with CT or MRI capabilities.

For ultrasound imaging, we have a portable Sonosite M-Turbo unit with both a curvilinear, 5-2 MHz transducer for primarily transabdominal imaging, and a linear array, 10-5 MHz transducer for primarily transrectal imaging. In addition, we have several donated large rolling Phillips Sonos units with an assortment of probes for both echocardiography and transabdominal imaging. One remains in the Zoo’s Animal Health Center and others are stored and used in animal areas for pregnancy diagnosis, echocardiograms on awake gorillas (through the mesh barrier), or just training/conditioning animals for awake ultrasound exams.

Zoo animals may present unique challenges when ultrasound imaging transcutaneously. In the case of fish and amphibians, imaging through a water bath (without even touching the patient!) can be very effective and noninvasive. The rough scaly skin of some reptiles makes a warm water bath similarly effective as a conductive medium for imaging snakes and lizards. Birds are not often examined via ultrasound because of the extensive respiratory (air sac) system they possess that interferes with the sound waves. For mammals, different species present different challenges. Many mammal species are thickly furred necessitating clipping of hair to establish good contact between the transducer and the skin. For transabdominal imaging, some species are very gassy (hippos, gorillas), which may complicate diagnostic imaging. Large or dangerous mammals that are examined awake via training need to be conditioned to present the body part of interest (chest, abdomen) at the barrier mesh and trust their trainer/keeper to allow contact with the probe. Often the greatest hurdle is habituating the animal to the ultrasound gel! When performing transabdominal imaging in our pregnant African elephant cow, rather than go through gallons of ultrasound gel smeared on her flank to fill in all the cracks and crevices in her thick skin, we run water from a hose just above wherever the transducer is placed.

DSC_4176

As general practitioners, zoo veterinarians have variable amounts of training in ultrasonography. We strive to do the best we can and are constantly learning, but the high variability in our daily tasks makes becoming an expert in ultrasound very difficult. So “it takes a village,” and we will regularly utilize specialists in our community to assist us in providing the best medical care for our patients. If I have a zebra or related species that requires a reproductive ultrasound exam, we will reach out to a local equine veterinarian that can apply their expertise in horses to a related species. Great apes have a high incidence of heart disease so whenever a gorilla or orangutan is anesthetized for an exam, part of the comprehensive care they receive is an echocardiogram by a human sonographer. Female great apes may get attention from our volunteer gynecologic sonographer as part of a reproductive evaluation. If the ultrasound exam is on a sea lion, wolf, or bear, I may contact a veterinary radiologist or veterinary internist competent in ultrasonography to assist.

In summary, ultrasonography represents a valuable, noninvasive, diagnostic tool for the zoo veterinarian.

Have you ever performed an ultrasound examination at a zoo? What was your experience? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Zoli Gyimesi, DVM, is the Senior Veterinarian at the Louisville Zoo in Louisville, Kentucky.

Evidence-Based Sonology: Changing the Practice of POCUS

Let’s say you are working in a busy emergency department. You get a call that a patient is being brought in by ambulance in cardiac arrest. You quickly assemble your team, assign roles, and discuss the plan—just in time for the patient to arrive. A paramedic performs one-arm compressions on an elderly man, pale yellow–his mouth stented open with a laryngeal mask airway. Your swarm of providers descends upon the patient, performing their jobs simultaneously in perfect concert. Airway, ventilations, rhythm checks, epinephrine: everything is running smoothly, but the patient is in pulseless electrical activity. During a rhythm check, someone looks at the heart with ultrasound. You glance at the screen and see a blurry subcostal cardiac view. You can barely make out the pericardium, but you see a weak contraction of the ventricles; there’s still no pulse. Compressions are quickly resumed. You consider all of the information – what are the chances this patient will survive? Should we keep going? Should I place a transesophageal probe? Wait, do I even have one of those?! Is ultrasound enough evidence to determine if further efforts are futile? Amidst your thoughts you hear a loud and eager call out: “I got a pulse!”. The team buzzes again – blood pressure, electrocardiogram, labs, vasopressors, cooling. You wonder, “Why did I even do that ultrasound? Is there any evidence it helps?”.

The difficulty encountered in this scenario is one that occurs countless times across the world’s hospitals each day. Point-of-care ultrasound (POCUS) has exploded off the shelves over the past decade. It has been borrowed from the hands of sonographers and cardiologists and made available to anyone who can afford a machine (training course optional). Overall, this has been a remarkably positive movement. Safer procedures, faster diagnoses, and sometimes a replacement for more potentially harmful imaging modalities. However, it is not without dangers. Those who use it aren’t always looking for the evidence for POCUS, as if it is somehow outside of the requirement for evidence. Others might not use this modality when it is indicated, ignoring the evidence that supports the use of POCUS. Both practices are unsafe. This is a big problem…but it’s one we can fix with the concept of evidence-based sonology.

Practicing based on the best available evidence has been a cornerstone of medicine since its advent; however, only more recently has it seen a visible resurgence. Now that it is in vogue there are physicians who are evidence-based medicine (EBM) specialists, there are EBM blogs and EBM courses. We teach our learners EBM principles and practices. So why has POCUS almost eluded this trend? Why would the evidence for POCUS not be examined with the same perspicacity as resuscitative endovascular balloon occlusion of the aorta (REBOA) in the emergency department, for example? I have some theories. In the early days, POCUS was practiced by a few champions with a dream who understood how POCUS could revolutionize practice. However, ultrasound equipment was not yet widely available. This limited initial studies to case reports and case series on new uses, touting primarily theoretical benefits to patients. As anyone who has used ultrasound knows, this tool holds a powerful allure by allowing its user to magically look into the body and directly visualize physiology and pathology. It is easy to imagine that after a while you build up a confidence; when you see something it must really be there. In a sense, the rapid outbreak of ultrasound use and the ever-expanding list of applications outran the available evidence basis.

A review of a subset of ultrasound-related abstracts showed that there is now increasing research, although most of it would be classified as quasi-experimental, which may not be enough to inform practice.1 But the times, they are a’ changin’. Now ultrasound is ubiquitous, at least at most academic centers, in emergency departments, ICUs, and other places that care for the acutely ill. Therefore, the body of literature is growing, and now we just have to pay attention to it. Enter evidence-based sonology (EBS).

Your first question is probably – sonology? What’s that? Did he just misspell sonography? No. Sonology is a term that implies an expertise in the entire spectrum of POCUS. Not only the acquisition (the “-graphy”) of the images, but additionally the indications for performing it, the interpretation, and the subsequent appropriate medical decision making.2 This is important because the evidence for this modality could fall apart at any one of these levels, so practitioners must be attuned to the hurdles of each step. Your second question probably is, isn’t this just EBM? Of course! But it is something that we could improve, and therefore we need to rebrand this practice to continue teaching it as a concept to anyone that uses POCUS. There are several reasons why this is important. As POCUS becomes more integrated into medical practice, it is important that we are all on the same page. Research helps us understand the benefits and limits of this tool for each application. It helps us to know the best time to use the tool, how accurate it is when we use it, how it affects patients when we use it, and potential harms associated with it.EBS Graphic

So where do we go from here? There are 3 main ways you can practice EBS:

  1. Know the evidence
  2. Model the evidence
  3. Make the evidence (AKA perform research)

As far as knowing the evidence, this is nothing new for anyone practicing in a medical field. You know how to get a hold of journals. These days it’s easier than ever. You can even use social media, podcasts, and blogs to further distill the information for you. Just make sure you read the original evidence yourself and develop your own decisions about how it will change your practice. Secondly, you have to actually implement what you learn. Obviously, not all research articles are practice-changing, but many will at least add something to your understanding of POCUS in clinical practice. For example, in the aforementioned case of cardiac arrest, recent literature could have informed many steps of using POCUS. Cardiac activity on ultrasound has an odds ratio of 3.6 for survival to admission.3 Patient’s in PEA with cardiac activity on POCUS might benefit from continuous adrenergics instead of standard ACLS.4 Furthermore, an understanding that there is the risk of misdiagnosis of cardiac standstill and the risk of delaying chest compressions, might make you pay closer attention to these details during use of POCUS.5,6 Practicing with this evidence is not only the safest practice, but for those at teaching institutions, it can help create a newer generation of EBS followers. Lastly, make the evidence. Do the research. If you have a question, go find the answer. Collaboration is easier now that ultrasound is more widespread, as is evidenced by more multi-center trials.7-9 Talk about research ideas at national meetings and consider research groups for important questions.

There is now a greater evidence basis for POCUS than ever before. No longer are we restricted to a few case reports and our own intuition. We have randomized controlled trials; we have meta-analyses; we have real patient-centered outcomes. Know the evidence, model the evidence, and make the evidence. These are simple practices that we need to support for the sake of our patients. Now it’s up to you. Will you start practicing EBS? Think of creative ways to begin promoting this concept today.

References:

  1. Prats MI, Bahner DP, Panchal AR, et al. Documenting the growth of ultrasound research in emergency medicine through a bibliometric analysis of accepted academic conference abstracts. [published online ahead of print April 15, 2018]. J Ultrasound Med. doi.org/10.1002/jum.14634.
  2. Bahner DP, Hughes D, Royall NA. I-AIM: a novel model for teaching and performing focused sonography. J Ultrasound Med. 2012; 31:295–300.
  3. Gaspari R, Weekes A, Adhikari S, et al. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016; 109:33–39.
  4. Gaspari R, Weekes A, Adhikari S, et al. A retrospective study of pulseless electrical activity, bedside ultrasound identifies interventions during resuscitation associated with improved survival to hospital admission. A REASON Study. Resuscitation. 2017; 120:103–107.
  5. Huis In ‘t Veld MA, Allison MG, Bostick DS, et al. Ultrasound use during cardiopulmonary resuscitation is associated with delays in chest compressions. Resuscitation. 2017; 119:95–98.
  6. Hu K, Gupta N, Teran F, Saul T, Nelson BP, Andrus P. Variability in Interpretation of Cardiac Standstill Among Physician Sonographers. Ann Emerg Med. 2018; 71:193–198.
  7. Smith-Bindman R, Aubin C, Bailitz J, et al. Ultrasonography versus computed tomography for suspected nephrolithiasis. N Engl J Med. 2014; 371:1100–1110.
  8. Atkinson PR, Milne J, Diegelmann L, et al. Does point-of-care ultrasonography improve clinical outcomes in emergency department patients with undifferentiated hypotension? An International Randomized Controlled Trial From the SHoC-ED Investigators. Ann Emerg Med. 2018; 72:478–489.
  9. Gaspari R, Weekes A, Adhikari S, et al. Emergency department point-of-care ultrasound in out-of-hospital and in-ED cardiac arrest. Resuscitation. 2016; 109:33–39.

Do you already practice evidence-based sonology? If not, will you start?  Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Michael Prats, MD, is currently Assistant Ultrasound Director and Director of Ultrasound Research in the Department of Emergency Medicine at the Ohio State University Wexner Medical Center. He is the founder of the Ultrasound G.E.L. Podcast that reviews recent articles in point of care ultrasound. Follow him on Twitter by his handle @PratsEM or visit ultrasoundgel.org.

Exploring the Potential of Ultrasound for Endometriosis

Endometriosis is a benign and chronic condition that can cause women to experience pain and fertility problems. For a long time, and to an extent still today, surgery is required to diagnose the disease. However, in the hands of an expert, a transvaginal ultrasound can accurately map deep endometriotic nodules and identify pouch of Douglas obliteration in a noninvasive fashion (Figure 1). Though this statement exhibits optimism in the effort to minimize the use of invasive surgery for diagnostic purposes, there are a few limitations with ultrasound in this scenario.

Leonardi Fig 1

Figure 1: Ultrasound depiction of bowel deep endometriosis and negative sliding sign (can only be noted with dynamic movements) (left) and laparoscopic depiction of bowel deep endometriosis and obliterated pouch of Douglas.

This blog post will attempt to highlight a few key issues with ultrasound’s potential in the realm of endometriosis. We also encourage your comments below on how you feel about ultrasound for endometriosis. Ultimately, we must all be critical of what can and cannot be achieved with ultrasound to ensure appropriate day-to-day clinical practice. This then also allows us to pursue ongoing cutting-edge research endeavors.Leonardi

Our first limitation is in the definition of the word, “expert.”  Thus far, one might attach the term “expert” to those responsible for the bulk of the literature on ultrasound for endometriosis. Certainly, in the view of these academics, ultrasound can see much more endometriosis than previously thought. The belief in the value of ultrasound and expertise in scanning/interpreting scans may trickle down the typical training ladder to fellows, residents, and sonographers. But is there any formal teaching—didactic or tactile? Is there any formal assessment of skill to suggest a minimum level of competency? Is there, at this time, even an understanding of how to evaluate a trainees’ learning curve of endometriosis ultrasound? What is to there to stop an individual from claiming competency when ultrasound for endometriosis is still in its infancy? One concern with pseudo-experts is that they may actually impede the advancement of endometriosis ultrasound integration because surgeons do not verify their findings intraoperatively, leading to skepticism.

Another big problem with the current potential for noninvasive ultrasound diagnosis of endometriosis is the inability to visualize superficial endometriosis, the mildest form of the disease. In surgery, deposits of superficial endometriosis are generally small, only a few millimeters in width and depth, and discolored (Figure 2). They sometimes cause adhesions to form between structures, such as the ovaries and the pelvic sidewall or uterosacral ligament. Thus far, no one has been able to directly identify superficial endometriosis deposits on ultrasound. However, soft markers on ultrasound, such as ovarian immobility and site-specific tenderness (ie, the ability to elicit pain with the pressure of the transvaginal probe during the scan) may hold some secrets to the diagnosis of this enigmatic form of the disease. Until further research supports the routine use of these components in ultrasound for endometriosis, the superficial disease remains a surgical, and therefore invasive, diagnosis.

Condous and Leonardi Fig 2

Figure 2: Laparoscopic depiction of small superficial endometriosis deposit.

Despite these limitations and others not highlighted here, the ability to directly visualize the more severe forms of the disease (ie, ovarian endometriomas, deep endometriosis of the bowel, and pouch of Douglas obliteration) has led to two very clear and significant benefits. One, the patient may be able to receive a diagnosis of disease in a noninvasive fashion, which may guide treatment. Second, if surgery is elected as the treatment of choice, surgeons can prepare. If severe disease is noted on a scan, surgeons can anticipate advanced level surgery, which may necessitate skill from a minimally invasive gynecologic surgeon and/or colorectal surgeon. If no disease is identified on a scan, there will be superficial endometriosis or no disease at all in surgery.

Overall, we are at a much better place right now than we have ever been when it comes to ultrasound for endometriosis. There are still limits that must be addressed, many of which are actively being investigated by dedicated teams around the world. This blog commentary does not attempt to offer solutions to the obstacles highlighted. However, please feel free to comment below if you have any thoughts on an approach to these, or other, limitations.

Have you tried ultrasound for endometriosis? What is your experience with ultrasound and endometriosis? What are your thoughts on the limitations of ultrasound for endometriosis? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Mathew Leonardi, MD, FRCSC, is an Honorary Lecturer in the Department of Obstetrics and Gynaecology and PhD student at the Nepean Clinical School, University of Sydney, under the supervision of Associate Professor George Condous. His Twitter handle is @mathewleonardi

From Sonographer to Ultrasound Practitioner: My Career Journey

I have been a sonographer for 18 years, and this year I was awarded Distinguished Sonographer at the 2018 AIUM Annual Convention. I can say without reservation that it is the biggest career honor that I have ever received and a moment that I will never forget. My path to becoming an Ultrasound Practitioner with a faculty appointment in the Department of Reproductive Medicine at UC San Diego has been rewarding, but it has not been easy. To be honest, I wasn’t always sure that I wanted to be a sonographer for more than a few years. I remember asking myself: Is this career as a sonographer enough or should I push myself further and go back to medical school? I have an incredible husband (who is also a sonographer) and he would have supported any choice I made, but ultimately – I decided not to pursue medical school. Even though I made that choice, I also told myself that there was nothing stopping me from learning as much as I could—my degree would not limit my potential and would not be what defines me.tantonheadshotblog

Since then, I have been studying the fetal heart A LOT. I enjoy all aspects of Maternal-Fetal Medicine (MFM) ultrasound, but the heart has always been an area of fascination for me. I love that it is both dynamic and complex, and, in my opinion, the most challenging aspect of fetal ultrasound. I have taken every opportunity to learn as much as I can from the incredible mentors that I have had the privilege of working with over the years. To this day, I am still learning, and I am amazed at all of the details we can see in these tiny little hearts! I eventually got the opportunity to cross train in pediatric echo and I jumped at that chance as well. I really enjoy being a part of a team of providers that can help the families affected by congenital heart disease.

I am, or I guess I should say I used to be, terrified of public speaking. I am proud of myself for overcoming this fear. Being in an academic center, I was used to teaching one on one, but it was about 8 years ago when I really pushed myself out of my comfort zone by lecturing to larger groups in the San Diego community. Putting together lectures can be time-consuming, difficult, and even stressful. I have spent many hours on weekends and evenings working on them, but I have also learned so much in the process. I started by speaking at local societies and hospitals, but over the years I have progressed and now I am proud to be invited to lecture at AIUM, SMFM, and other CME events around the country. Overcoming my fear of public speaking has been a huge stepping stone in my career and I love representing the sonographer voice on a larger platform.

So, how did I become a Practitioner with a faculty appointment?

I had a vision of how an Ultrasound Practitioner could function in our department. After all, by that point in my career, I was a seasoned MFM sonographer with 10 years of experience and I was still incredibly driven to learn and grow. I was keen to expand my skill set to function as a mid-level provider. Ultrasound Practitioner is not a new concept; SDMS had proposed a working model for an Ultrasound Practitioner in 2001. Dr. Beryl Benacerraf, among others, had already been successfully using an Ultrasound Practitioner for years. But working in a large academic center – my vision took years to bring to reality. I knew it would never happen if I didn’t continue to push for it. Along the way, I struggled, I questioned myself, I got overwhelmed, but I never gave up. I also had the support of some key physicians who believed in me. Their support was crucial to my eventual success.

I have now been an Ultrasound Practitioner for 6 years and as our department has grown to 8 ultrasound rooms, my role has expanded. Some of my responsibilities include: checking sonographers’ cases for quality and completeness, directing sonographers to get more images, obtaining images on difficult or complex cases, deeming the exam complete, writing preliminary reports, and discussing routine sonographic findings with patients. This working model frees up the physicians to spend more time with patients with abnormal findings and also allows the sonographers to keep moving with their schedules while ensuring quality patient care. Of course, this is only a snapshot of my day to day work, I still perform many of the fetal echocardiograms. I love to scan and I wouldn’t have it any other way.

My path to becoming a faculty member in the Department of Reproductive Medicine at UC San Diego was similar to my journey to becoming an Ultrasound Practitioner: it took time, lecturing nationally as well as teaching locally, coauthoring research papers and once again, having mentors who supported my appointment.

So, when people ask me about my success, I tell them it is because of hard work, persistence, believing in myself, and having mentors who believe in me too. My advice to sonographers is to know how important your role is; you are not “just a sonographer.” You should always keep learning, take pride in your work, and don’t be intimidated by the hierarchy of medicine. Our voice is crucial to the care of our patients, and that is really what matters.

Benacerraf BR, Bromley BS, Shipp TD, et al. The making of an advanced practice sonographer. J. Ultrasound Med 2003; 22:865–867.

Lockhart ME, Robbin ML, Berland LL, Smith JK, Canon CL, Stanley RJ. The sonographic practitioner: piece to the radiologist shortage puzzle. J Ultrasound in Med 2003; 22:861–864.

Bude RO, Fatchett AS, Lechtanski RT. The Use of Additionally Trained Sonographers as Ultrasound Practitioners. J Ultrasound Med 2006; 25:321–327

Society of Diagnostic Medical Sonography. Ultrasound Practitioner master’s degree curriculum and questionnaire: response by the SDMS membership. J Diagn Med Sonography 2001; 17:154–161.

How has ultrasound shaped your career? If you are an Ultrasound Practitioner, how did you get there? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community. 

Connect

Tracy Anton, BS, RDMS, RDCS, FAIUM, is an Ultrasound Practitioner with a faculty appointment in the Department of Reproductive Medicine at University of California, San Diego.

Clinical Tests Worldwide

“A pregnancy test and a dip urine,” Dr. St. Louis responded. “Wow!” I replied in surprise. Having completed a fellowship in global health, I had learned that testing was severely limited in resource-limited settings, particularly outside of normal business hours. This was still impressive. We had just been discussing how things were going with his new job at Princess Alice Hospital and what tests were available overnight in his workplace that is located in the eastern mountains of Grenada. During weekday daytime hours, imaging is limited to plain film x-ray. Occasionally, there is an ultrasound technician also available. If desperate, the technicians can be called in from home. All other tests: blood, urine, CSF, must be batched and sent by car via a winding, serpiginous road over a mountain to the capital. If they’re lucky, you may get the test result in about 6 hours; however, most take up to 12 hours. Most advanced imaging, CT and MRI, are only available in the private sector.

I first met Dr. Daniel St. Louis just a few weeks after beginning the Masters of Emergency Medicine program offered by the University of Guyana and started with the help of Emergency Medicine faculty and Vanderbilt University. With other emergency medicine colleagues, I had spent a lot of time helping him learn to perform, interpret, and apply point-of-care ultrasound studies during his training in the Accident and Emergency Department at Georgetown Public Hospital before he returned to his native island in the south Caribbean. Dr. St. Louis immediately saw the benefit of ultrasound during his training and requested every piece of material possible to be able to master sonography.

The care that Daniel and his colleagues provide with limited testing is really impressive. But of all tests that Dr. St. Louis could be equipped with while caring for a sick patient on an overnight shift, ultrasound is uniquely valuable. Bedside ultrasound doesn’t require a technician, it is reusable, it is versatile, it provides rapid diagnosis of many critical illnesses, and it provides the diagnosis to actionable diseases where lives hang in the balance of the minutes and hours ultrasound saves. There are more significant tests: a microscope and Giemsa stain in a malaria endemic zone or rapid HIV testing at the national public health level. But when I was standing in front of a child in shock from shrapnel wounds outside Mosul, Iraq, an ultrasound probe is what I want most.

As bedside ultrasound machines continue to become more portable and more affordable, the significance of bedside ultrasound will continue to grow. This is true in a large academic tertiary medical center, in regional access hospitals in Grenada, and in critical access health posts in the most remote regions of the globe. AIUM and its members are uniquely positioned to aid in providing equipment and, more importantly, providing education and techniques to help improve the quality of bedside ultrasound as one of the most important clinical tests worldwide. Will we be up for the challenge?

If you work in a resource-limited setting, how is ultrasound most useful for you? How have you seen ultrasound incorporated into medical care in other nations? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Jordan Rupp, MD, RDMS, is an Assistant Professor of Emergency Medicine at Vanderbilt University Medical Center and the Director for Global Sounds:  Ultrasound Development Project.  Read more about Global Sounds at www.globalsoundsproject.org or continue the conversation on Twitter:  @globalsounds_us.

Ultrasound Made Me the Doctor I Wanted to Be

I didn’t come into medicine knowing much about what doctors really did. I also didn’t graduate my emergency medicine residency really believing point-of-care ultrasound (POCUS) was all that useful. Maybe it’s just a fad, I remember thinking.Minardi, Joseph J.

There were two things I did come to enjoy about medicine: making interesting diagnoses and intervening in ways that helped patients. Those were the victories and they were always more satisfying when I got to do them as independently as possible. It was great to diagnose appendicitis with a CT scan, but I had to share at least some of the credit with the radiologist.

I remember sometimes being frustrated with the fragmentation of care in American medicine. Send the patient to another facility with these services, order this imaging study by this specialist, consult this specialist for this procedure, and so on.

A few cases early in my career really brought to light these frustrations.

One was a young woman who didn’t speak English who presented to our community hospital who appeared to have abdominal pain. It took hours after getting approval to call in a sonographer, consulting with the radiologist, and eventually calling in the gynecologist from home to take her to the operating room for her ruptured ectopic pregnancy. Hours went by while her condition worsened and I felt helpless, being uncertain about her diagnosis and relying on fragmented, incomplete information from others to make management decisions. Luckily, her youth allowed her to escape unscathed, but I was frustrated with what I didn’t know and couldn’t provide for her: a rapid, accurate diagnosis and quick definitive action.

In another case, a young boy was transferred to our tertiary care center for possible septic hip arthritis and waited nearly 24 hours to undergo more ED imaging, subspecialty consultation, then wait for the availability of the pediatric interventional radiologist to perform X-ray guided hip aspiration with procedural sedation. I remember again feeling helpless and seeing the hopelessness in the eyes of his parents after seeing so many doctors, spending so many hours far from home just waiting on someone to tell them what was wrong with their son and what was going to be done to help him.

After I was asked to lead POCUS education for our residency program and began to embrace it as a clinical tool, I encountered similar cases, but now with much more satisfying experiences for me as a physician, and hopefully, presumably for my patients. Now, I routinely hear stories from my residents and colleagues that go something like Hey Joe, check out this ectopic case, ED to OR in 20 minutes with bedside ultrasound. We have had cases of suspected hip arthritis where we were able to provide a diagnosis and care plan from the ED in 2–3 hours by performing bedside US-guided hip arthrocentesis. These and numerous other cases where diagnoses are made in minutes independently by the treating clinician have convinced me that POCUS can help improve healthcare. My colleagues and I have performed diagnostic and therapeutic procedures that we never would have considered attempting before we could competently use POCUS, allowing us to provide immediate care right where and when the patients needed it.

The “passing fad” of POCUS has allowed me to make medicine and being a doctor more into what I wanted it to be: seeing patients, giving them a diagnosis, decreasing the anxiety over uncertainty, and providing relief for their suffering. I trained and practiced without the advantages of ultrasound and I have seen the positive impact it can have not only on patients but also on the health care system and my job satisfaction as well. The advantages of more immediate, efficient diagnoses, better availability of advanced procedures can all be provided in a less fragmented, more cost-effective manner when treating clinicians are armed with and properly trained to use POCUS. There’s no way I would ever go back.

If you learned how to use ultrasound after you completed your original medical education, how did it affect your career? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Joseph J. Minardi, MD, is Chief of Emergency and Clinical Ultrasound, and Associate Professor of Emergency Medicine and Medical Education at the West Virginia University School of Medicine.

Can Ultrasound be Used to Improve Prosthetic Device Function?

Ultrasound technology has continued to be miniaturized at a rapid pace for the past several decades. Recently, handheld smartphone-sized ultrasound systems have emerged and are enabling point-of-care imaging in austere environments and resource-poor settings. With further miniaturization, one can imagine that wearable smartwatch-sized imaging systems may soon be possible. What new opportunities can you imagine with wearable imaging? My research group has been pondering this question for a while, and we have been working on an unexpected application: using ultrasound imaging to sense muscle activity and volitionally control robotic devices.Bebionic

Since antiquity, humans have been working on developing articulated prosthetic devices to replace limbs lost to injury. One of the earliest designs of an articulated mechanical prosthetic hand dates from the Second Punic War (218–201 BC). However, robust and intuitive volitional control of prosthetic hands has been a long-standing challenge that has yet to be adequately solved. Even though significant research investments have led to the development of sophisticated mechatronic hands with multiple degrees of freedom, a large proportion of amputees eventually abandon these devices, often citing limited functionality as a major factor.

A major barrier to improving functionality has been the challenge of inferring the intent of the amputee user and to derive appropriate control signals. Inferring the user’s intent has primarily been limited to noninvasively sensing electrical activity of muscles in the residual limbs or more invasive sensing of electrical activity in the brain. Commercial myoelectric prosthetic hands utilize 2 skin-surface electrodes to record electrical activity from the flexor and extensor muscles of the residual stump. To select between multiple grips with just these 2 degrees of freedom, users often have to perform a sequence of non-intuitive maneuvers to select among pre-programmed grips from a menu. This rather unnatural control mechanism significantly limits the potential functionality of these devices for activities of daily living.

Recently, systems with multiple electrodes that utilize pattern recognition algorithms to classify the intended grasp end-state from recorded signals have shown promise. However, the ability of amputees to translate end-state classification to intuitive real-time control with multiple degrees of freedom continues to be limited.

To address these limitations, invasive strategies, such as implanted myoelectric sensors are being pursued. Another approach, known as targeted muscle reinnervation, involves surgically transferring the residual peripheral nerves from the amputated limb to different intact muscle targets that can function as a biological amplifier of the motor nerve signal.  While these invasive strategies have exciting promise, there continues to be a need for better noninvasive sensing.

Recently, our research group has demonstrated that ultrasound imaging can be used to resolve the activity of the various muscle compartments in the residual forearm. When amputees imagine volitionally controlling their phantom limb, the innervated residual muscles in the stump contract and this mechanical contraction can be visualized clearly on ultrasound. Indeed, one of the major strengths of ultrasound is the exquisite ability to quantify even minute tissue motion. Contractions of both superficial and deep-seated functional muscle compartments can be spatially resolved enabling high specificity in differentiating between different intended movements.

Our research has shown that sonomyography can exceed the grasp classification accuracy of state-of-the-art pattern recognition, and crucially enables intuitive proportional position control by utilizing mechanical deformation of muscles as the control signal. In studies with transradial amputees, we have demonstrated the ability to generate robust control signals and intuitive position-based proportional control across multiple degrees of freedom with very little training, typically just a few minutes.

We are now working on miniaturizing this technology to a low-power wearable system with compact electronics that can be incorporated into a prosthetic socket and developing prototype systems that can be tested in clinical trials. The feedback we have received so far from our amputee subjects and clinicians indicates that this ultrasound technology can overcome many of the current challenges in the field, and potentially improve functionality and quality of life of amputee users.

Now, if only noninvasive ultrasound neuromodulation can be used to provide haptic and sensory feedback to amputee users in a closed loop ultrasound-based sensing and stimulation system, we will be a step closer to restoring sensorimotor functionality to amputee users, and a grand challenge in the field of neuroprosthetics may be within reach. That will, of course, require some more research.

I was attracted to ultrasound research as a graduate student because of the nearly limitless possibilities of ultrasound technology beyond traditional imaging applications. As wearable sensors revolutionize healthcare, perhaps wearable ultrasound may have a role to play. One can only imagine what other novel applications may be enabled as the technology continues to be miniaturized. I think it is an exciting time to be an ultrasound researcher.

What new opportunities can you imagine with wearable imaging? Are you working on something using miniaturized ultrasound? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Siddhartha Sikdar, PhD, is a Professor in the Bioengineering Department in the Volgenau School of Engineering at George Mason University.