How to Commercialize Ultrasound Technology

A few years ago, I had the opportunity to commercialize an ultrasound technology. Reflecting upon this process, I am very grateful that there were so many team members and things (including those beyond our control) that contributed to the success of the project. By sharing our journey from the research bench to public use, I hope that people will get an idea of what is involved in a commercialization process and appreciate the importance of team work.Chen_Shigao_2016

It started with our research team who sketched out an idea of using multiple push beams spaced out like a comb to generate multiple shear waves at the same time. It could be used to improve both signal-to-noise ratio and the frame rate for ultrasound elastography. Fortunately our lab had a research scanner that came with a programmable platform. This idea was prototyped and tested on the same day and it worked! Were it not for the research scanner, it would have taken months to get this done. The alternative process involves contacting an ultrasound company (if we ever find one), gaining their support (a research agreement could take months to reach), and testing on a commercial prototype scanner (which is much harder compared to using a research scanner).

It was soon discovered afterwards that the interference of shear waves from the comb push beams make it very hard to calculate the wave speed for elasticity imaging accurately. A mathematician in our team offered to apply a signal processing algorithm that detangles the complicated shear waves into simpler component waves. It solved our problem and helped the idea pass the initial functionality test. The next step was to show the industry the translational potential of this technology and out-license it to them for further development and testing.

Back then, the clinical ultrasound division at our institution was developing a strategic partnership with a leading ultrasound company, which was looking for a shear wave elastography solution for their products. The company soon decided to license our technology. To speed up the progress, our intellectual property (IP) office negotiated the licensing agreement with the company, while we worked with the company engineers on the technology in parallel. Both parties shared a common culture of openness, which allowed us to exchange codes with each other. This trusting relationship was found to be very beneficial by both sides as we shared the dedication to achieve common goals quickly.

To ensure the successful implementation of the prototype, the collaboration continues in the form of site visits and numerous teleconferences between the sites until satisfied phantom and in vivo results were yielded. When the near-end prototype was available, an independent clinical study was performed at our institution to verify the performance and establish cut points for liver fibrosis staging. It greatly exemplified the benefit of affiliating with a large medical center. The extensive interdisciplinary research and medical environment at our institution has provided a unifying framework that bridges the gap of technical creation and clinical deployment. Upon positive results from clinical trials, the company was able to launch the product in 2014. The technique was FDA-approved and released at RSNA. We are very pleased to see the research outcome has been taken from the bench to the bedside and is improving the effectiveness of patient care worldwide.

It truly takes a village to make this happen. The success came with the supports of a huge team of ultrasound physicist, PhD student, mathematician, study coordinator, sonographer, radiologist, IP staff, and licensing manager. It calls for an industrial partner that has shared appreciation of value and common core objectives. Looking back at our journey, it is without question that every step presents its own challenge. By sharing our experiences, we hope to contribute to your future successful technology commercialization.

Have you tried to commercialize an ultrasound technology? Have you had a different experience commercializing ultrasound technology? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Shiago Chen, PhD, is a Professor at the Department of Radiology, Mayo Clinic College of Medicine.

Should You Include CEUS and Elastography in Your Liver US Practice?

Today, the liver is regarded with high importance by our clinical colleagues. The obesity epidemic, with its considerable impact in North America, is associated with severe metabolic disturbances including nonalcoholic fatty liver disease (NAFLD). Further, liver cancer is the only solid organ cancer with an increasing incidence in North America. Where do we as ultrasonographers fit into the imaging scheme to most appropriately deal with these new challenges?

The liver is the largest organ in the body, and certainly the most easily accessed on an abdominal ultrasound (US). It has been the focus of countless publications since the introduction of abdominal ultrasound many decades ago. Exquisite resolution allows for excellent detailed liver evaluation allowing US to play an active role in the study of both focal and diffuse liver disease. Focal liver masses are often incidentally detected on US examinations performed for other reasons and on scans performed on symptomatic patients. Abdominal pain, elevated liver function tests, and nonspecific systemic symptoms may all be associated with liver disease. The introduction of color Doppler to abdominal US scanners many years ago elevated the role of US by allowing for improved capability of US to participate in assessment of the hemodynamic function of the liver as well.

malignant tumor ceus

The well-recognized value of abdominal US, including detailed morphologic liver assessment, has made this examination the most frequent study performed in diagnostic imaging departments worldwide. However, in recent years, US has been relegated to an inferior status relative to CT and MR scan, as their use of intravenous contrast agents has made them the cornerstone modalities for virtually all imaging related to the presence of focal liver masses. As we now live in an era of noninvasive diagnosis of focal liver disease, greyscale US has fallen out of favor, as it is nonspecific for liver mass diagnosis. While US is the recommended modality for surveillance scans in those at risk for development of hepatocellular carcinoma, today, all identified nodules are then investigated further with contrast-enhanced CT and/or MR scan.

In the more recent past, US has been augmented by 2 incredible noninvasive biomarkers: elastography, which measures tissue stiffness, and contrast-enhanced ultrasound, which shows perfusion to the microvascular level for the first time possible with US. These noninvasive additions are invaluable and their adoption in routine US practices may allow the reemergence of US as a major player in the field of liver imaging.

Most conventional US machines today are equipped with the capability to perform elastography, especially with point shear wave techniques (pSWE). In pSWE, an ARFI pulse is used to generate shear waves in the liver in a small (approximately 1 cm3) ROI. B mode imaging is used to monitor the displacement of liver tissue due to the shear waves. From the displacements monitored over time at different locations from the ARFI pulse, the shear wave speed is calculated in meters per second, with higher velocities associating with increased tissue stiffness. The accuracy for the determination of liver fibrosis and cirrhosis with pSWE as compared with gold standard liver biopsy is now indisputable. Because of the great significance of liver fibrosis secondary to fatty liver and the obesity epidemic, the development of this technique as a routinely available study is essential. Because of the frequent selection of US as the first test chosen for any patient suspect to have undiagnosed diffuse liver disease, the opportunity for elastography to be included with the diagnostic morphologic US test should be developed as a routine.

Contrast-enhanced US (CEUS), similarly, is available on most currently available mid- and high-range US systems, allowing for nondestructive low MI techniques to image tumor and liver vascularity following the injection of microbubble contrast agents for US. This allows for a similar algorithmic approach to contrast-enhanced CT and MR scan for noninvasive diagnosis of focal liver masses. CEUS additionally offers unique imaging benefits that include no requirement for ionizing radiation and also imaging without risk of nephrotixity, invaluable in the many patients who present for imaging with high creatinine, preventing injection of both CT and MR contrast agents.

Incorporation of pSWE and CEUS into standard liver US in patients with suspect diffuse or focal liver disease is a cost-effective and highly appropriate consideration as this is readily available, performed without ionizing radiation, and at a considerable cost saving over all other choices.

Can you diagnose a hepatocellular carcinoma or other liver tumor with CEUS?  And, can you determine if a liver is cirrhotic or not?  With the addition of pSWE and CEUS to your liver US capability, yes, you can.

What is your experience with treating liver disease? What aspect is most difficult for you? What other area do you think would benefit from the addition of CEUS? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Stephanie R Wilson is a Clinical Professor at the University of Calgary.