Ultrasound in the Age of Telehealth, Telemonitoring, Telemedicine, Robots, and Kimonos

Today, there is online access to almost everything; groceries, a video chat with your grandmother across the globe, step-by-step instructions on how to fix your lawnmower, and a virtual doctor to help with pain in your abdomen. The healthcare applications of the internet have exploded in recent years with digital health and telemedicine assuming one of the highest growth areas for start-up entrepreneurs. The expansion of telehealth resources (IT infrastructure/capabilities) has allowed telemedicine to extend to isolated, inaccessible, remote spaces (maybe even your living room). And telehealth has gone beyond just a video chat with incorporation of sensing technologies including cameras, digital stethoscopes, and ultrasound.
Kat and Scott

Ultrasound imaging in austere locations is not just about access to an ultrasound system; it requires both the ultrasound operator, and the interpreter, to have specific knowledge, competency, and ultimately accountability about the quality of the examination, and the diagnosis it helps to provide. Our NASA-sponsored research team has shown that novice ultrasound operators can acquire diagnostic quality ultrasound images after a short training period with remote tele-ultrasound guidance in a space medicine environment. The astronaut operators were able to perform terrestrial standard abdominal, cardiovascular, and musculoskeletal ultrasound examinations with modest remote guidance oversight; zero gravity specific exams of the eyes, spine, and sinus were also completed. Importantly, the astronaut crewmembers quickly became more autonomous during their 6-month mission in space and were able to self-direct image acquisition.

But a major challenge with tele-ultrasound is operator training. William R. Buras, Sr, Director, Life Sciences at Tietronix Software Inc, and his team are making an augmented reality user interface for ultrasound scanning using a wearable heads-up display with imbedded guidance to improve ultrasound competency. This innovative Houston team is being funded by a NASA grant.

Unfortunately, when it gets to real-world practicality, neither the ultrasound machine nor the examination is intuitive. A team in Canada led by Dr Andy Kirkpatrick are working on a sustainable ultrasound solution using both remote ultrasound system operation and telemonitoring. They investigated the ability of non-trained firefighters to perform ultrasound in Edmonton being guided from Calgary. “We found that by using just-in-time–training with motivated firefighters, the remote examiner guiding the firefighters was 97% correct in determining the presence of a simulated hemo-peritoneum. Ironically, while this trial design also attempted to examine the utility of remote ultrasound knobology control, the firefighters were so good at the task that the remote knobology control became less of a relevant problem” said Dr Kirkpatrick.

To reduce the challenges of novice ultrasound operators, at team in France, led by Dr Phillipe Arbelle, linked a robot-coupled ultrasound device with a remote operator. The distant clinician can move the ultrasound probe with a joystick to acquire the ultrasound images. His concept has been implemented in a French ultrasound device, SonoScanner, that the European Space Agency will begin investigating on the International Space Station.

Similar work in robotic ultrasound is being done in Australia, where a team is building a robotic ultrasound machine that can perform abdominal ultrasound.

Have you seen the guy in a kimono buying a car? Online resourcing is indeed pants-optional. But if you plan on telemonitoring be suitably dressed.

Alien

What other areas have come a long way when it comes to ultrasound? What areas are poised to be next? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Kathleen M Rosendahl-Garcia, BS, RDMS, RVT, RDCS, is a NASA contractor working for KBRWyle and is a senior scientist and clinical sonographer in the Space Medicine division working under the Human Health and Performance Contract. Scott Dulchavsky, MD, PhD, is the Roy D. McClure Chairman of Surgery and Surgeon-in-Chief at Henry Ford Hospital in Detroit, and Professor of Surgery, Molecular Biology and Genetics at the Wayne State University School of Medicine. He is also a principal investigator for NASA and heads a project teaching astronauts how to use medical ultrasound in space.

Research in Ultrasound: Why We Do It

“Medicine, the only profession that labors incessantly to destroy the reason for its existence.” –James Bryce

We all know the important medical discoveries clinical research has given us over time. stamatia-v-destounis-md-facrYou could even make the case that the high standards of care we have today are built on centuries of research.

The world of medical ultrasound is no stranger to clinical research—dating back to the early work of transmission ultrasound of the brain. This work was especially important, as it was the first ultrasonic echo imaging of the human body.

Since then, research has brought about gray scale imaging, better transducer design, better understanding of beam characteristics, tissue harmonics and spatial compounding, and the development of Doppler. All of these research developments, as well as many others, were highly significant and have lead us to today’s high-quality handheld, real-time ultrasound imaging.

For me, the biggest and most important developments were and have been in breast ultrasound. In 1951, the research of Wild and Neal discovered and qualified the acoustic characteristics of benign and malignant breast tumors through use of an elementary high-frequency (15-MHz) system that produced an A-mode sonogram. These researchers published the results of additional ultrasound examinations in 21 breast tumors: 9 benign and 12 malignant, with two of the cases becoming the first 2-dimensional echograms (B-mode sonograms) of breast tissue ever published.

It is research that leads to landmark publications that change the way we practice. The ACRIN 6666 trial led by Dr Wendie Berg and her co-authors evaluated women at elevated risk of breast cancer with screening mammography compared with combined screening mammography and ultrasound. This pivotal study demonstrated that adding a single screening ultrasound to mammography can increase cancer detection in high-risk women. In our current environment this is even more relevant, as breast density notification legislation is being adopted in states across the country. With the legislation, patients with dense breast tissue are often being referred for additional screening services, with ultrasound most often being the screening modality of choice.

Screening ultrasound is an area on which I have focused much of my own research. I practice in New York State, where our breast density notification legislation became effective in January 2013. I have been interested in reviewing my practice’s experience with screening ultrasound in these patients to evaluate cancer detection and biopsy rates. My initial experience was published in the Journal of Ultrasound in Medicine in 2015, and supported what other breast screening ultrasound studies have found, an additional cancer detection rate of around 2 per 1000. Through my continued evaluation of our screening breast ultrasound program, I have found a persistently higher cancer detection rate by adding breast ultrasound to the screening mammogram–which is of great importance to all breast imagers, as we are finding cancers that were occult on mammography.

Participating in valuable research is important to me and my colleagues because part of our breast center’s mission is to investigate new technologies and stay on the cutting-edge by offering the latest and greatest to our patients. Participating in clinical research provides us important experience with new technology, and an opportunity to evaluate firsthand new techniques, new equipment, and new ideas and determine what will most benefit our patients. This is what I find the most important aspect of research, and why I do it; to be able to find new technologies that improve upon the old, to continue to find breast cancers as early as possible, and to improve patient outcomes.

Why is medical research/ultrasound research so important to you? What research questions would you like to see answered? Share your thoughts and ideas here and on Twitter: @AIUM_Ultrasound.

Stamatia Destounis, MD, FACR, is an attending radiologist and managing partner at Elizabeth Wende Breast Clinic. She is also Clinical Professor of Imaging Sciences at the University of Rochester School of Medicine & Dentistry.

My Chilean Experience

Earlier this year, I had the opportunity to travel to Chile to present at the 18th Congress of Medical Technology meeting in Santiago. It was an amazing experience that I will never forget! The total travel time was about 14 hours, which began in Orlando with a flight delay and an emergency change to an earlier flight that had one seat left and was just about to
close its doors!Chile

Sonographers, as well as other allied health professionals, begin their education in the Colegio de Tecnologos Medicos (College of Medical Technologies); and the Capitulo de Ecografia (Sonography Chapter) is an arm of the College.  It is estimated that there are about 300 sonographers in the country of Chile. I was invited to speak at the meeting of the congress and the preconference, which was the inaugural meeting of the Sonography Chapter.

The evening before the preconference, I was invited to meet with a group of sonographers at a reception to discuss professional issues, certification, and education. The reception was hosted by the President of the College of Medical Technologies, Veronica Rosales, and the President of the Sonography Chapter and AIUM member, Mario Gonzalez Quiroz. At the reception, I was introduced to Fernando Lopez, known as the first sonographer in Chile with about 30 years of experience. I found the sonographers of Chile to be very welcoming and gracious, as well as curious about the role of sonographers in the U.S. They are also eager for educational opportunities to expand their knowledge and expertise.

I gave a total of 6 lectures during the 2 meetings on a variety of topics, including point-of-care, acute abdomen, obstetrical pathology, and pediatric sonography. Oh…did I mention that I don’t speak Spanish? I had synchronous translation of my lectures, and then I was able to enjoy other lectures that were then translated into English for me. As I was developing my lectures, I learned that with asynchronous translation, presentations should be shorter and you need to speak slowly. For me, that meant I had to reduce my typical image-heavy 100-120 slide presentation down to 70-80 slides. Luckily that worked within the time I was given.

This was my first time having lectures translated, my first international lectures, and my first time in Chile (actually my first time in South America)…lots of firsts! It was a true honor to present at this meeting and to meet the sonographers of Chile. I feel like I have made lifelong friendships, expanded my professional family, and experienced the beauty of a new country.

Have you given talks to an international audience? What was your experience? How can U.S.-based physicians and sonographers support their counterparts in other countries? Share your thoughts and ideas here and on Twitter: @AIUM_Ultrasound.

Charlotte Henningsen, MS, RT(R), RDMS, RVT, is the Chair & Professor of the Sonography Department at Adventist University of Health Sciences and the Director of the Center for Advanced Ultrasound Education. She currently serves as the AIUM 2nd Vice President.