Ultrasound in Orthopedic Practice

Point-of-care ultrasound brings great value to patient care in orthopedic practice, especially for soft tissue problems. It offers safe, cost effective, and real-time evaluation for soft tissue pathologies and helps narrow down the differential diagnosis.Pic1

There are variety of soft tissue lesions in orthopedic practice with classic clinical presentation that may not necessitate ultrasound examination for confirmation of diagnosis, for example ganglion cyst. However, there is value in performing an ultrasound scan for these common soft tissue lesions.

Ganglion cyst on the dorsum of the wrist or radial-volar aspect of the wrist are confirmed based on clinical examination and presentation. Adding ultrasound examination can help differentiate classic ganglion cyst from some rare findings like Lipoma, anomalous muscles, or soft tissue tumors. Ultrasound examination may also be helpful in finding the source of the ganglion cyst or the stalk of the ganglion cyst. This can help pre-surgical planning if resection of the ganglion cyst is desired by the patient and recommended by the surgeon, because arthroscopic or traditional surgical approach may be needed based on the location of the stalk or neck of the cyst.

Images 1 and 2 show examples of two different patients with similar presentation of slow growing mass on the digit. Image 1 from patient 1 shows a solid tumor overlying the flexor tendons of the digit, where the mass was palpated. Image 2 from patient 2, shows a cystic mass overlying the tendons of the digit. In both of the cases, masses were painless and slow growing with minimal to no discomfort. Ultrasound is a great tool in differentiating solid vs cystic lesions and can help avoid attempted aspiration of a solid mass when the mass is presented in an area of classic ganglion cyst’s usual presentation.

Another soft tissue problem, where ultrasound is a superior imaging tool is tendon pathology. Ultrasound can help differentiate tendinosis, tenosynovitis, or tendon tears.

In tenosynovitis, tendon by itself shows normal echotexture and uniform appearance but the tenosynovium that surrounds the tendon gets inflamed and appears as hypoechoic halo around the tendon, for example, in image 3, tendons of the first dorsal compartment of the wrist show uniform thickness and fibrillar echotexture, however there is hypoechoic swelling around the tendons, this is an example of tenosynovitis of first dorsal compartment of the wrist.

In tendinosis, tendon loses its fibrillar pattern and appears swollen and may show vascularity on color ultrasound, which is suggestive of neoangiogenesis or angiofibroblastic proliferation. For example, in Image 4, the tendons of the first dorsal compartment of the wrist show focal enlargement, hypoechoic swelling, and loss of normal fibrillar echotexture and tendon appears disorganized with evidence of increased vascularity on color ultrasound. This is an example of tendinopathy or tendinosis.

Focal tendon tears appear as anechoic or hypoechoic focal defects in tendon substance. Image 5 shows partial tear of the triceps tendon from the olecranon process. The partial tear appears as a focal hypoechoic defect in the tendon, which is confirmed in the long and short axis scan of the tendon.

In full thickness tears, the tendon is seen retracted proximally with no fiber attachment at the tendon foot print. Image 6 shows example of a full thickness complete tear of the supraspinatus tendon from its bony attachment at the greater tubercle. The tendon has retracted proximally and the retracted stump is not visible on ultrasound examination.

Image 6

Point-of-care ultrasound adds significant value to clinical examination in orthopedic setting. It enhances the understanding of a patient’s problem, increases confidence in care provided, and high patient satisfaction is reported.

 

In what unexpected ways do you find ultrasound to be useful? Do you have additional tips for using ultrasound in orthopedics?  Comment below or let us know on Twitter: @AIUM_Ultrasound.

Mohini Rawat, DPT, MS, ECS, OCS, RMSK, is program director of Fellowship in Musculoskeletal Ultrasonography at Hands On Diagnostics and owner of Acumen Diagnostics. She is ABPTS Board-Certified in Clinical Electrophysiology; ABPTS Board-Certified in Orthopedics; registered in Musculoskeletal Sonography, APCA; and has an added Point-of-Care MSK Soft Tissue Clinical Certificate.

Ultrasound-Guided Musculoskeletal Injections

I began using Musculoskeletal (MSK) ultrasound (US) in 2010. It has been incredibly exciting to observe to growth of applications of this amazing technology for both myself personally as well as for the entire MSK US practicing community. MSK US has become an integral part of my Sports Medicine practice and I certainly anticipate its’ role to continue to expand and be able to provide cutting edge medical care to my patients.IMG_8265

There is great variability with which MSK US is used among practitioners. Some providers do complete diagnostic scans of the shoulder for example, to evaluate the extent of a potential rotator cuff tear to guide with potential surgical decision making, while others perform selective nerve blocks and finally some practitioners simply use it to assist with the accuracy of various MSK joint and soft tissue injections. I would like to illustrate to all of you the applications for which I most commonly use MSK US to improve patient care.

Probably the most common application for which I use MSK US is to assist with the accuracy of joint and soft tissue injections. It has been clearly documented that MSK US improves the accuracy of certain MSK injections. While I do not use MSK US for all injections, ie, simple knee intra-articular and shoulder sub-acromial injection, I routinely employ MSK US to assist with certain injections. Common joints and soft tissue areas for which I employ MSK US for either cortisone or pro-inflammatory injections like Platelet Rich Plasma (PRP) are:

Shoulder: Glenohumeral and acromioclavicular joint and long head biceps tendon sheath

Hip: Femoroacetabular, hamstring origin (tendon or bursa), mid portion hamstring, pubic symphysis, gluteal tendons and bursa, iliopsoas bursa and tendon

Knee: Pes anserine and iliotibial bursae, patella and quadriceps tendons, Baker’s cyst aspiration

Wrist: Triangular fibro cartilage complex (TFCC), various wrist extensor and flexor tendons, aspirate ganglion cysts, numerous hand and wrist joints

Elbow: Lateral and medial epicondyle area, triceps insertion, olecranon bursitis, distal biceps and intra articular

Ankle: Achilles, tibialis posterior, peroneal tendons, numerous foot and ankle joints, plantar fascia

Back: Sacroiliac joint

I would also like to illustrate some interesting recent cases supporting the utility of MSK US in a Sports Medicine practice.

I am consulted numerous times a week by my orthopedic surgeon colleagues for diagnostic joint injections. Oftentimes, a patient’s hip pain may be multifactorial or difficult to specifically isolate. I will perform an intra-articular injection to see if it alleviates that patient’s pain, thus identifying that the area in which I placed the injection as the pain generating location. Correct identification of the pain generating source will help to assist with treatment considerations.

I also recently had a patient with greater than 1 year of hip pain. He had seen 8 different providers and had an extensive work up with imaging and injections only to have continued pain. He had hip joint and hamstring origin injections and felt no improvement. I was able to use the US to identify and isolate the obturator internus as the source of his pain by providing a diagnostic injection. This injection helped to make the appropriate diagnosis and ultimately influenced treatment.

Last month, an orthopedic surgeon asked me to evaluate a patient for refractory symptoms from a Baker’s cyst. The cyst persisted despite multiple intra articular-injections. I evaluated the cyst with US and noted that it was multilobulated. I was able to specifically aspirate each of the loculations and the patient has remained symptom free.

I was also asked to see one of our varsity basketball players for refractory lateral knee pain. His athletic trainer was treating him with rehabilitation and multiple modalities but the pain persisted and was affecting the athletes’ ability to play. I was able to identify an inflamed Iliotibial band bursa with the US and subsequently inject it. He became pain free and was able to play in that weeks’ game as well as the rest of the season.

Another exciting application of MSK US that has piqued my interest recently is the use of the US to assist with appropriately identifying the compartments of the lower extremity for chronic exertional compartment testing. I can employ the US to guarantee that I am in the appropriate anatomic compartment for testing.

With any new technology, the application and utility of MSK US can be user-dependent and it can be affected by a somewhat steep learning curve. MSK US curriculums are frequently being added to Sports Medicine fellowships to train some of the future leaders of medicine. I certainly anticipate that this technology with continue to evolve and its’ treatment applications will continue to expand.

 

How do you use MSK US? How has it improved your practice? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Bryant Walrod, MD, CAQSM, is Assistant Professor: Clinical at Ohio State University, is Team Physician for the Ohio State Athletics, and practices at The Ohio State University Wexner Medical Center.

Ultrasound in the Age of Telehealth, Telemonitoring, Telemedicine, Robots, and Kimonos

Today, there is online access to almost everything; groceries, a video chat with your grandmother across the globe, step-by-step instructions on how to fix your lawnmower, and a virtual doctor to help with pain in your abdomen. The healthcare applications of the internet have exploded in recent years with digital health and telemedicine assuming one of the highest growth areas for start-up entrepreneurs. The expansion of telehealth resources (IT infrastructure/capabilities) has allowed telemedicine to extend to isolated, inaccessible, remote spaces (maybe even your living room). And telehealth has gone beyond just a video chat with incorporation of sensing technologies including cameras, digital stethoscopes, and ultrasound.
Kat and Scott

Ultrasound imaging in austere locations is not just about access to an ultrasound system; it requires both the ultrasound operator, and the interpreter, to have specific knowledge, competency, and ultimately accountability about the quality of the examination, and the diagnosis it helps to provide. Our NASA-sponsored research team has shown that novice ultrasound operators can acquire diagnostic quality ultrasound images after a short training period with remote tele-ultrasound guidance in a space medicine environment. The astronaut operators were able to perform terrestrial standard abdominal, cardiovascular, and musculoskeletal ultrasound examinations with modest remote guidance oversight; zero gravity specific exams of the eyes, spine, and sinus were also completed. Importantly, the astronaut crewmembers quickly became more autonomous during their 6-month mission in space and were able to self-direct image acquisition.

But a major challenge with tele-ultrasound is operator training. William R. Buras, Sr, Director, Life Sciences at Tietronix Software Inc, and his team are making an augmented reality user interface for ultrasound scanning using a wearable heads-up display with imbedded guidance to improve ultrasound competency. This innovative Houston team is being funded by a NASA grant.

Unfortunately, when it gets to real-world practicality, neither the ultrasound machine nor the examination is intuitive. A team in Canada led by Dr Andy Kirkpatrick are working on a sustainable ultrasound solution using both remote ultrasound system operation and telemonitoring. They investigated the ability of non-trained firefighters to perform ultrasound in Edmonton being guided from Calgary. “We found that by using just-in-time–training with motivated firefighters, the remote examiner guiding the firefighters was 97% correct in determining the presence of a simulated hemo-peritoneum. Ironically, while this trial design also attempted to examine the utility of remote ultrasound knobology control, the firefighters were so good at the task that the remote knobology control became less of a relevant problem” said Dr Kirkpatrick.

To reduce the challenges of novice ultrasound operators, at team in France, led by Dr Phillipe Arbelle, linked a robot-coupled ultrasound device with a remote operator. The distant clinician can move the ultrasound probe with a joystick to acquire the ultrasound images. His concept has been implemented in a French ultrasound device, SonoScanner, that the European Space Agency will begin investigating on the International Space Station.

Similar work in robotic ultrasound is being done in Australia, where a team is building a robotic ultrasound machine that can perform abdominal ultrasound.

Have you seen the guy in a kimono buying a car? Online resourcing is indeed pants-optional. But if you plan on telemonitoring be suitably dressed.

Alien

What other areas have come a long way when it comes to ultrasound? What areas are poised to be next? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Kathleen M Rosendahl-Garcia, BS, RDMS, RVT, RDCS, is a NASA contractor working for KBRWyle and is a senior scientist and clinical sonographer in the Space Medicine division working under the Human Health and Performance Contract. Scott Dulchavsky, MD, PhD, is the Roy D. McClure Chairman of Surgery and Surgeon-in-Chief at Henry Ford Hospital in Detroit, and Professor of Surgery, Molecular Biology and Genetics at the Wayne State University School of Medicine. He is also a principal investigator for NASA and heads a project teaching astronauts how to use medical ultrasound in space.

A Future Career Path for the MSK Sonographer

The sonographic community has the opportunity to take advantage of recent orthopedic surgeons’ interest in diagnostic ultrasound. Although much of the interest was prompted by the usefulness of guided injections, sonographers need to fully appreciate and understand the value of the information derived from an ultrasound study, which will ultimately lead the surgeon to better surgical decisions and better patient outcomes. Once you are a part of the orthopedic diagnostic team, you will be able to function as a specialist Physician Assistant member, adding a new dimension to the orthopedic practice and demonstrating the incredible value of diagnostic soft tissue imaging.

I am a Board-Certified Orthopedic Surgeon, with subspecialty in shoulder orthopedics including arthroscopy and open surgery. I incorporated diagnostic shoulder/MSK ultrasound as part of my office practice 20 years ago especially for evaluation of patients presenting with protracted shoulder pain (in addition to the traditional history and physical exam, and occasional MRI).

I have valued diagnostic shoulder imaging in my practice, and determined that all Orthopedic Surgeons should be using ultrasound imaging as part of their usual diagnostic evaluation of patients (especially patients presenting with protracted painful shoulder problems affecting function). In addition, an ultrasound exam with normal findings may be more important than an ultrasound exam that finds some pathology.

I have concluded that the real-time ultrasound examination with comparison to the contralateral side available to the orthopedic surgeon, in most cases, is more valuable than the information obtained from the MRI (especially regarding soft tissue pathology, present or absent).

For example, compare the MRI detail of the supraspinatus with the ultrasound motion clip of the supraspinatus moving under the acromion (see the still MR image below and, at bottom of page, the 1st video, which is the active ultrasound clip of the supraspinatus). MRI is accomplished with arms immobilized at one’s side, and does not benefit from the study being compared to the contralateral side. However, it produces a nice clear image. The ultrasound image in long axis can be a still image or a motion clip viewing the supraspinatus or infraspinatus moving under the acromion and the reaction causing impingement syndrome, spurs along the anterior lateral border of the acromion, dynamic sub acromial bursitis, or a rotator cuff tear, which may be attritional and similarly present on viewing the asymptomatic shoulder.

figure-1

The Math

The following statistics help to identify the future vital need for the sonographer to become part of the team working with the surgeon in an orthopedic office practice (Orthopaedic Surgeon Quick Facts, www.aaos.org; 10 Interesting Statistics and Facts About Orthopedic Practice, www.beckersspine.com; Am J Orthop 2016;45(2):66-67; 20 Things to Know About Orthopedics, www.beckershospitalreview.com).

There are approximately 28,000 (2012) orthopedic surgeons in the US, 75% of whom are in private practice, and many are in group practices of 2 or more. The general orthopedic surgeon sees an average of 70-90 patients per week, of which an estimated 12% or more have shoulder problems. This equates to 10 orthopedic shoulder evaluations per week for 1 solo general orthopedic practice, and 20 for a 2-man group (in the same office). Ten to 20 patients (minimum) per week would then benefit from ultrasound imaging information, assisting the surgeon in making a surgical decision.

The following image identifies how important the cross axis image is, as well as describes the degree of rotator cuff injury and approximates the relative number of rotator cuff muscle tendon units thathave been rendered dysfunctional.

figure-2-a-to-c

Left, Close to the infraspinatus/supraspinatus interval and insertion site, many fibers are in harm’s way for tendon/fibril tearing. Center, The area for careful X-axis grid examination, looking for possible partial undersurface tearing, fibers losing their connection/attachment to the footplate. Right, Example of an X-axis grid examination of this full thickness tendon tear, which should be accompanied by an x-axis measurement of the width/base of the triangular tear. Real time examination can help to identify the quality of the tissue, which may require repair. Usually, orthopedic surgeons pay more attention to the MRI reading and the coronal views (ultrasound long axis view). (See the 2nd video clip below for real-time imaging of the X-axis rotator cuff tear.) The X-axis view/measurement is the more important image. The wider the tear, the more tendon fibrils are affected and the more dysfunction to the rotator cuff area involved.

This need for diagnostic shoulder ultrasound information could be sufficient and important enough to support an entire career for an MSK sonographer. All the other valuable areas of MSK expertise that come with the MSK sonographer would be an extra bonus to the orthopedic office practice: helping with other ultrasound examinations, diagnosis, and surgical decisions.

Video clip 3 below is an MSK ultrasound examination for CTS identifying median nerve mobility or restriction within the tissue, questioning the presence of scar tissue restricting motion.

 

How have you used ultrasound in orthopedic surgery? What other areas of ultrasound are on the brink of emerging in a new field? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Alan Solomon, MD, is a Board Certified Orthopedic Surgeon and Honorary Staff at the Metro West Medical Center, Natick/Framingham, MA.

 

Interdisciplinary Education and Training in MSK Ultrasound

In my primary specialty of occupational medicine there is a need for practical education in musculoskeletal ultrasound for both diagnostic evaluation and therapeutic interventional guidance. Incorporation of this into education has begun recently and is continuing in the specialty. A wide variety of specialties are represented in occupational medicine, including many specialists who move into the field after a mid-career transition.

Interestingly, over the last few years clinicians have approached me and asked me to help them learn musculoskeletal ultrasound from many different disciplines outside of occupational medicine. These have included emergency medicine, orthopedics, rheumatology, sports medicine, family medicine, radiology, palliative care, and physical medicine and rehabilitation. When inquiring into why these clinicians are seeking training in this modality it seems that the consistent answer is thdr-sayeedat medical students are graduating and insisting on using ultrasound in their residency training. It would seem that many of our medical students are learning ultrasound at a rate that will outpace attending physician knowledge, exposure, and experience. Indeed, when teaching ultrasound to many of the medical students at West Virginia University as part of their medical education, I was astounded to see how proficient they were at using the machine, the transducer, and correctly identifying both normal and pathologic anatomy. It’s my understanding that many universities have included medical ultrasound into the academic curricula as a bridge to their respective gross anatomy courses and in their general clinical medical education.

Ultrasound is a modality utilized by many medical specialties for various indications. Several specialties outside of radiology, including the ones above, utilize ultrasound. Increasingly, residency programs are integrating ultrasound into their ACGME-accredited curriculum and, importantly, medical students are also learning the benefits of using the modality. It seems clear that despite the number of pitfalls, hurdles, and difficulties using ultrasound, the modality has proven to be an asset in clinical settings and has become a permanent fixture in hospital and clinical settings. The benefits of utilizing ultrasound have been well documented across many academic medical journals. I believe that medicine, as a whole, has done well to embrace the modality, however, there seems to be another vital step to take in the education arena to more fully integrate the modality into our patient’s care.

Currently, most education models for teaching ultrasound, whether it is for residents or medical students, involves grouping like kind together. Emergency residents learn it in the emergency medicine didactics. Physical medicine and rehabilitation (PM&R) residents learn it from demonstrations in their own didactics, and so on. Perhaps approaching the curriculum from a more inclusive perspective, however, would be more beneficial for residents and fellows. I, personally, had experience teaching an integrated musculoskeletal course at West Virginia University. The idea, admittedly, was born out of necessity. Physicians experienced in ultrasound from sports medicine, emergency medicine and occupational medicine created and executed a curriculum to teach musculoskeletal ultrasound and invited residents from other specialties. The interest we were able to garner quite frankly surprised me. Although the curriculum was targeted to occupational medicine residents the interest in using musculoskeletal ultrasound was widespread. Residents from specialties like emergency medicine, radiology, family medicine, internal medicine, and orthopedics attended our sessions.

While the course was a success, introducing an integrated curriculum across medical specialties posed a new set of challenges. My specialty was able to use dedicated didactic time for the education but many other specialties have disparate educational time. Many residents could not make all of the sessions and many more could not make any sessions because of fixed residency schedules. This makes coordination very difficult. As I have pondered this over the last few months I believe that educational leaders should begin to form structured educational collaborative time for activities like education in musculoskeletal ultrasound. Each discipline will be able to contribute to teaching to ensure high quality evidence-based curriculum for residents learning ultrasound. Each discipline has their individual strengths and collaboration ensures coordination and even learning amongst instructors. Integrating medicine has been a goal of thought leaders in medicine at the very highest levels and can be replicated for the instruction and training of our resident physicians.

Another option is to allow residents to attend the American Institute of Ultrasound in Medicine’s annual conference where interdisciplinary education in ultrasound occurs. This conference even has a day for collegial competition among medical students and schools. In fact, the courses are created to encourage engagement in the education and training of clinicians at all levels of training. The overall goal is to advance the education and training in this modality and hope that education leaders begin to encourage collaboration in a much larger scale thus achieving integrated medical care that provides a building block to lead to high quality evidence-based medical care for our patients, families, and communities.

What other areas of ultrasound education have room to grow? How would you recommend making changes? Do you have any stories from your own education to share? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Yusef Sayeed, MD, MPH, MEng, CPH, is a Fellow at Deuk Spine Institute, Melbourne, FL.

Greater Trochanteric Pain Syndrome

In a study funded in part by AIUM’s Endowment for Education and Research, Jon Jacobson, MD, and his team from the University of Michigan set out to determine the effectiveness of percutaneous tendon eer_logo_textsidefor treatment of gluteal tendinosis. The full results of this study were recently published in the Journal of Ultrasound in Medicine.

Greater trochanteric pain syndrome is a condition that most commonly affects middle-aged and elderly women but can also affect younger, and more active, individuals. It has been shown that the underlying etiology for greater trochanteric pain syndrome is most commonly tendinosis or a tendon tear of the gluteus medius, gluteus minimus, or both at the greater trochanter and that tendon inflammation (or tendinitis) is not a major feature. This condition can be quite debilitating and often does not respond to conservative management.

Treatment of greater trochanteric pain syndrome should therefore include treatment of the underlying tendon condition. Ultrasound-guided percutaneous needle fenestration (or tenotomy) has been used to effectively treat underlying tendinosis and tendon tears, including tendons about the hip and pelvis. Similarly, autologous platelet-rich plasma (PRP), often combined with tendon fenestration, has been used throughout the body to treat tendinosis and tendon tears.

Although studies have shown patient improvement with PRP treatment, the true effectiveness of this treatment compared to other treatments remains uncertain. Although percutaneous ultrasound-guided tendon fenestration has been shown to be effective about the hip and pelvis, there are no data describing the use of PRP for treatment of gluteal tendons, and there is no study comparing the effectiveness of each treatment for gluteal tendinopathy. The purpose of this blinded prospective clinical trial was to compare ultrasound-guided tendon fenestration and PRP for treatment of gluteus tendinosis or partial-thickness tears in greater trochanteric pain syndrome.

We designed a study in which patients with symptoms of greater trochanteric pain syndrome and ultrasound findings of gluteal tendinosis or a partial tear (<50% depth) were blinded and treated with ultrasound-guided fenestration or autologous PRP injection of the abnormal tendon. Pain scores were recorded at baseline, week 1, and week 2 after treatment. Retrospective clinic record review assessed patient symptoms.

To break this down a little further, the study group consisted of 30 patients (24 female), of whom 50% were treated with fenestration and 50% were treated with PRP. The gluteus medius was treated in 73% and 67% in the fenestration and PRP groups, respectively. Tendinosis was present in all patients. In the fenestration group, mean pain scores were 32.4 at baseline, 16.8 at time point 1, and 15.2 at time point 2. In the PRP group, mean pain scores were 31.4 at baseline, 25.5 at time point 1, and 19.4 at time point 2. Retrospective follow-up showed significant pain score improvement from baseline to time points 1 and 2 (P < .0001) but no difference between treatment groups (P = .1623). There was 71% and 79% improvement at 92 days (mean) in the fenestration and PRP groups, respectively, with no significant difference between the treatments (P >.99).

These results led us to conclude that both ultrasound-guided tendon fenestration and PRP injection are effective for treatment of gluteal tendinosis, showing symptom improvement in both treatment groups.

What is your experience with treating greater trochanteric pain syndrome? Are you familiar with the Endowment for Education and Research?  Share your thoughts and ideas here and on Twitter: @AIUM_Ultrasound.

Jon A. Jacobson, MD, is Professor of Radiology, Director of the Division of Musculoskeletal Radiology, Assistant Medical Director of Northville Health Center, and Medical Director of Taubman Radiology within the University of Michigan Health System.

Ultrasound Set to Transform Occupational Medicine

There is no question that medical ultrasound is quickly becoming a valuable tool in musculoskeletal (MSK) medicine. Providers are realizing that this modality allows for quick evaluation in the office and even has a higher resolution than MRI. Research shows, for example, that scanning a shoulder to evaluate for a rotator cuff tear is faster, cheaper, and at least as sensitive and specific as ordering an MRI.

dr sayeedWhere using this modality for MSK medicine will have a huge impact is within occupational medicine.

In occupational medicine, we are tasked with providing quality care for patients while simultaneously enabling patients, institutions, corporations, and the overall health care system to save money. For practitioners, MSK ultrasound allows us to accomplish both of these goals. Widely utilized by our counterparts in European medical schools and hospitals, MSK ultrasound’s use in occupational medicine is still in its early stages in the United States. This means that occupational medicine is one specialty that stands to reap significant clinical benefits from its use.

But in order to understand the potential, and to position MSK ultrasound at the forefront of occupational medicine education, I conducted a little research.

Last year, I conducted a survey to learn how many occupational medicine program directors and residents were using MSK ultrasound and how many wanted to use it. The survey results confirmed that it was not widely used in occupational medicine residency programs. In fact, only a couple of programs use it and they do so cursorily.  The results also showed that most had a sincere interest in learning to use it, but there was not a program in place.

Since residency programs produce the field’s future physicians, I designed a multidisciplinary MSK ultrasound course to teach the basics to attendings and residents. Weekly sessions focused on specific anatomic regions to help provide a foundation for identifying pathology and improve interventional skills. This “how to” manuscript was recently published in the Journal of Occupational and Environmental Medicine.

Moving forward, I am presenting an introductory level lecture at the occupational medicine national conference (AOHC) to further demonstrate how MSK ultrasound could potentially be widely used in our field. I hope to introduce “hands-on” workshops over the course of the next few years to give the field a chance to learn this modality and implement it into practice. My goals are to see occupational medicine practitioners provide the highest standard of health care for this unique hardworking population of patients, while concurrently reducing costs for workers’ compensation claims.

What can AIUM provide occupational medicine to help further the use of ultrasound? What other areas are on the verge of being transformed by ultrasound? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Yusef Sayeed, MD, MPH, MEng, CPH, is an occupational medicine Chief Resident at West Virginia University in Morgantown, WV.