Pioneering Ultrasound Units

If you think your ultrasound machine is out-dated, imagine if you still had to use these from as long ago as the 1940s. 

1940s

Ultrasonic Locator
Dr G. D. Ludwig, a pioneer in medical ultrasound, concentrated on the use of ultrasound to detect gallstones and other foreign bodies embedded in tissues. During his service at the Naval Medical Medical Research Institute in Bethesda, Maryland, Dr Ludwig developed this approach that is similar to the detection of flaws in metal. This is A-mode in its operation and was Dr Ludwig’s first ultrasonic scanning equipment.

Locator

 

1950s

Ultrasonic Cardioscope
Designed and built by the University of Colorado Experimental Unit, the Cardioscope was intended for cardiac work.

Ultrasonic Cardioscope

 

1960s

Sperry Reflectoscope Pulser / Receive Unit 10N
This is an example of the first instrument to use an electronic interval counter to make axial length measurements of the eye. Individual gates for the anterior segment, lens, and vitreous compartment provided accurate measurement at 10 and 15 MHz of the axial length of the eye. This concept was the forerunner of all optical axis measurements of the eye, which are required for calculation of the appropriate intraocular lens implant power after cataract extraction. This instrument, which includes A-mode and M-mode, was developed by Dr D. Jackson Coleman and Dr Benson Carlin at the Department of Ophthalmology, Columbia Presbyterian Medical Center.

Sperry Reflectoscope Pulser

 

Sonoray Model No. 12 Ultrasonic Animal Tester (Branson Instruments, Inc.)
This is an intensity-modulated B-mode unit designed exclusively for animal evaluations. The instrument is housed in a rugged aluminum case with a detachable cover that contains the cables and transducer during transportation. The movable transducer holder on a fixed-curve guide was a forerunner of mechanical B-scan ultrasonic equipment.

Sonoray Animal Tester

 

Smith-Kline Fetal Doptone
In 1966, pharmaceutical manufacturer Smith Kline and French Laboratories of Philadelphia built and marketed a Doppler instrument called the Doptone, which was used to detect and monitor fetal blood flow and the heart rate. This instrument used the continuous wave Doppler prototype that was developed at the University of Washington. 

Smith Kline Fetal Doptone

 

Smith-Kline Ekoline 20
Working in collaboration with Branson Instruments of Stamford, Connecticut, Smith-Kline introduced the Ekoline 20, an A-mode and B-mode instrument for echoencephalography, in 1963. When B-mode was converted to M-mode in 1965, the Ekoline 20 became the dominant instrument for echocardiography as well as was the first instrument available for many start-up clinical diagnostic ultrasound laboratories. The A-mode was used in ophthalmology and neurology to determine brain midlines.

Ekoline 20

 

University of Colorado Experimental System
Developed by Douglas Howry and his team at the University of Colorado Medical Center, this compound immersion scanner included a large water-filled tank. The transducer moved back and forth along a 4-inch path while the carriage on which the transducer was mounted moved in a circle around the tank, producing secondary motion necessary for compound scanning. 

Compound immersion scannerCompound immersion scanner tub

 

1970s

Cromemco Z-2 Computer System (Bioengineering at the University of Washington)
This color-Doppler prototype, introduced in 1977, was the computer used for early color Doppler experiments. Z2 “microcomputers” were used for a variety of data acquisition and analysis applications, including planning combat missions for the United States Air Force and modeling braking profiles for the San Francisco Bay Area Rapid Transit (BART) system during actual operation.

Cromemco Z-2 Computer System

 

ADR-Model 2130
ADR of Tempe, Arizona, began delivering ultrasound components to major equipment manufacturers in 1973. Linear array real-time scanners, which began to be manufactured in the mid-1970s, provided greater resolution and more applications. Grayscale, with at least 10 shades of gray, allowed closely related soft tissues to be better differentiated. This 2-dimensional (2D) imaging machine was widely used in obstetrics and other internal medicine applications. It was marketed as an electronic linear array, which was faster and more repeatable without the need for a water bath as the transducer was placed right on the skin.

ADR Model 2130

 

Sonometrics Systems Inc, NY BR-400V
The first commercially available ophthalmic B-scanner, this system provided both linear and sector B-scans of the eye. The patient was examined in a water bath created around the eye by use of a sterile plastic ophthalmic drape with a central opening. Both A-scan and B-scan evaluations were possible with manual alignment of the transducer in the water bath. The instrument was developed at the Department of Ophthalmology, Columbia Presbyterian Medical Center by Dr D. Jackson Coleman, working with Frederic L. Lizzi and Louis Katz at the Riverside Research Institute.

Sonometrics Systems Inc, NY BR-400V

 

Unirad GZD Model 849
Unirad’s static B-scanner, allowing black-and-white anatomic imaging, was used with a scan arm and had similar controls as those used today, including processing, attenuation compensation, and gain.

Unirad GZD Model 849

 

1980s

American Flight Echocardiograph
This American Flight Echocardiograph (AFE) is a 43-pound off-the-shelf version of an ATL 400 medical ultrasonic imaging system, which was then modified for space shuttle compatibility by engineers at the Johnson Space Center to study the adaptations of the cardiovascular system in weightlessness. Its first journey to space was on the space shuttle Discovery in 1985 and its last on the Endeavour in 1992. The AFE generated a 2D cross-sectional image of the heart and other soft tissues and displayed it in video format at 30 frames per second. Below, Dr Fred Kremkau explains more about it.

 

To check out even more old ultrasound machines, visit the American Institute of Ultrasound in Medicine’s (AIUM’s) An Exhibit of Historical Ultrasound Equipment.

 

How old is the ultrasound machine you use now? What older ultrasound equipment have you used? Did it spark your desire to work with ultrasound? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community.

Connect_digital_graphics_E-NEWSLETTER

The AIUM is a multi-disciplinary network of nearly 10,000 professionals who are committed to advancing the safe and effective use of ultrasound in medicine.

Ultrasound-Guided Cancer Imaging: The Future of Targeted Cancer Treatment

Tumor margins and malignant grade are best defined by vascular imaging modalities such as Doppler flow or contrast enhancement combined with videomicroscopy. The following are image-guided treatment options that can be performed on breast, prostate, liver, and skin cancers.

NEW DOPPLER APPLICATIONS

Blood vessel mapping using the various Doppler modalities is routinely used in both cancer treatment and reconstructive planning. In cancer surgery, it is critical to locate aberrant veins or arterial feeders in the operative site so postoperative blood loss is minimized. Advanced 3D Doppler systems allow for histogram vessel density measurement of neoplastic angiogenesis.

VESSEL DENSITY INDEX

(Fig 1) Baseline neovascularity is a treatment surrogate endpoint and therapy is maintained, increased, or suspended based on quantitative angiogenesis data.

SOLID ORGAN CANCER IMAGING UPDATES

Breast cancer, invading the lower dermis and nipple, discovered with high-resolution probes signifies the tumor has outflanked clinical observation essential for detecting the newly discovered entity of breast implant-associated anaplastic large cell lymphoma (BIA-ALCL). This capability is also vital for diagnosing the recent epidemic of male breast cancers arising near the mammographically difficult nipple areolar complex, occurring in our 911 First Responders.

For prostate cancer, 4D ultrasound can identify low-grade cancer delimited by the capsule and with low vessel density, and should be followed serially at 6-month intervals.

CONTRAST-ENHANCED ULTRASOUND (CEUS)

In 1990, Dr. Rodolfo Campani developed ultrasound contrast for liver imaging and Drs. Cosgrove (London) and Lassau (Paris) extended the use to breast, skin, and prostate tumors. CEUS is currently used worldwide but is not Food and Drug Administration (FDA)-approved in the United States.

One use for CEUS is microbubble neovascularity, which demonstrates therapeutic response since the Response Evaluation Criteria in Solid Tumors (RECIST) studies noted tumor enlargement during treatment might be related to cell death with cystic degeneration or immune cell infiltration destroying malignant tissue. Doppler ultrasound or CEUS reliably verifies decreased angiogenesis in place of contrast CT or dynamic contrast-enhanced (DCE) MRI. If vascular perfusion ceases, thermal treatments, such as cryotherapy, high-intensity focused ultrasound (HIFU), or laser ablation, should be completed.

Four-dimensional (4D) ultrasound imaging is real-time evaluation of a 3D volume so we can show the patient immediately the depth and the probability of recurrence. Specific echoes in skin cancer generated by nests of keratin are strong indicators of aggression and analyzed volumetrically. Highly suspect areas are checked for locoregional spread and a search is performed for lymphadenopathy so we can determine if the disease is confined and whether further surgical intervention is unlikely at this time. Patients are reassured because they simultaneously see the exam proceed in systematic stages. In serious cases, the patient is forewarned that the operation involves skin grafts and tissue construction.  4D ultrasound permits image-guided biopsy of the most virulent area of the dermal tumor and allows the pathologist to focus on the most suspicious region of the lymph node mass excised from the armpit, neck, or groin. Some laboratories are using postop radiography and sonography for better specimen analysis.

VIDEO DIGITAL MICROSCOPY VS BIOPSY

Fear of complications can deter patients from seeking medical opinion and surgical intervention, so many opt for noninvasive options. Imaging can help to reduce unnecessary biopsies because it can help identify the 1 out of every 33,000 moles that is malignant, while weeding out those that are not.

Once skin cancer is diagnosed, the treatment depends on depth penetration, possibly involving facial nerves, muscles around the eye and nasal bone or ear cartilage. Verified superficial tumors are treated topically or by low dose non-scarring radiation. Many cancers provoke a benign local immune response or coexistent inflammatory reaction that simulates a much larger area of malignancy, and cicatrix accompanies the healing response. 4D imaging combined with optical microscopy (RCM (reflectance confocal microscopy) or OCT (optical coherence tomography)) defines the true border during surgery, sparing healthy tissue, resulting in smaller excisional margins and less scar formation.

 

Do you have any tips on incorporating ultrasound in cancer imaging? Comment below, or, AIUM members, continue the conversation on Connect, the AIUM’s online community.

connect_now_live_digital_graphics_e-newsletter-1

Robert Bard, MD, DABR, FASLMS, currently runs a private consulting practice in New York City. He authored Image Guided Dermatologic Treatments, Image Guided Prostate Cancer Treatment, and DCE-MRI of Prostate Cancer and is a member of multiple leading international imaging societies. Since 1972, Dr. Bard has pioneered digital imaging technologies as alternatives to surgical biopsies for dermatologic and solid organ neoplastic disease.