It’s All About The Students

A relatively new AIUM award, the Peter H. Arger, MD, Excellence in Medical Student Education Award honors an AIUM member whose outstanding contributions to the development of medical ultrasound education warrant special merit. At the 2015 AIUM Annual Convention, David Bahner, MD, RDMS, was presented with this award. Here’s what he had to say about this honor and the future of medical ultrasound education.David Bahner

What does it mean to you to be named only the second recipient of the Peter H. Arger Excellence in Medical Student Education Award winner?
I am very honored to be recognized by the AIUM and feel it is an honor to receive this award named after a pioneer in imaging, Dr Peter H. Arger.  Dr Arger’s passion for medical education and his commitment to ultrasound is well known.  It is my hope to continue those activities in medical education that Dr Arger pioneered in his work with the AIUM. Watching the first award winner, Dr Richard Hoppmann, receive this award last year was a thrill because it meant that the AIUM was recognizing the importance of medical ultrasound education. I am grateful for this great honor and hope to live up to the substantial role model Dr Peter Arger has been for this important area in ultrasound.

Why is ultrasound in medical education so important?
In the past, the feeling that ultrasound is operator dependent has been a drag on its impact within medicine. However, since medical education has been changing at many institutions because of electronic medical records, changes in curricula, and changes in technology, opportunities for point-of-care ultrasound now abound. Add to that the fact that ultrasound has become portable and affordable, and we see more operators embracing this modality. Unfortunately, the training for this device many times doesn’t starts until residency or even after clinicians have completed their medical training. By that time, however, the technology has outpaced the education. If the future can be planned to prepare 21st century clinicians to use this ultrasound tool, implementing this within medical school allows “pluripotent” students the ability to learn the foundations of ultrasound before entering residency.

What do you see as the biggest barrier to having ultrasound integrated into the medical education curriculum?
The lack of trained faculty either funded or supported in this process of training medical students is the biggest barrier to implementing ultrasound training in medical school. This lack of faculty is coupled with a “crowded’ curriculum where medical educators don’t see the benefit of adding ultrasound at the expense of removing other parts of the curriculum. The true insight is that ultrasound can be integrated into many parts of the medical student curriculum when both teachers and students embrace learning how to use ultrasound.  For example, anatomists learning how to scan or family practitioners working with ultrasound to guide procedures are possible solutions to these barriers.

You are a born and bred Ohioan. Why are people from Ohio so proud of Ohio?
It probably has something to do with the history of the state and how that has played into innovation, politics and competitiveness. Ohio is best known for the Wright Brothers who hailed from Dayton and used their hard work and innovation to change the 20th century with the discovery of lift and flight. Politically it has been an influential state in most presidential elections. Plus, 6 presidents are from Ohio. Ohioans are fierce competitors and extremely proud of the 16 national football championships earned by The Ohio State University. Oh, and the Pro Football Hall of Fame and Rock and Roll Hall of Fame are located within Ohio. We have a lot to be proud of.

Personally, my family grew up in Ohio and I feel a bond with the change of seasons, the geography, the history, the people, and the culture of hard work and helping others. I am an American, an Ohioan, a doctor, an educator, an innovator, and a Buckeye.

What role does or should ultrasound play in medical education? What are you proud of? Where did you learn your ultrasound skills? Comment below or let us know on Twitter: @AIUM_Ultrasound.

David Bahner, MD, RDMS, is Professor and Director of Ultrasound in the Department of Emergency Medicine at The Ohio State University College of Medicine.

Simulators Role in Ultrasound Training

I believe the future of health care will involve the expanded use of diagnostic ultrasound, which will be accomplished through the use of an enhanced version of today’s handheld ultrasound scanner. I envision this “sono-scope” to be a wireless, lightweight, handheld imaging device with a long battery life and high-quality image capture that will expand the capabilities of the stethoscope.

The compact, portable ultrasoundpedersen_image scanners began entering the medical imaging marketplace around year 2000. Since then the market has grown dramatically, and the portable scanners have bifurcated into two broad groups: (i) The pocket-sized or handheld scanners (HHUS) and (ii) the larger, full-featured point-of-care ultrasound systems (POCUS).

These devices provide doctors with an extension of their senses and augment existing tools. But to be truly transformational, users need to receive ultrasound training from the beginning of their medical career, which will allow them quickly to “rule in” and “rule out” possible diagnoses and lead to earlier treatment decisions and/or more relevant further tests.

I maintain that the main barrier for making the HHUS (and POCUS) every clinician’s examination tool of choice, is not the technology, but rather the lack of opportunity to acquire and develop the needed scanning skills.

Thus, finding training strategies that enable the integration of ultrasound into medical schools is an essential step in overcoming this barrier. If the next generation of doctors had ultrasound for diagnosis and guided procedures as a vital part of their training, they would quickly develop a natural comfort with this tool and, with time, increasing sophistication. A parallel can be drawn regarding the attitude toward acquiring computer skills. As recent as 40 years ago, the operation of computers was thought to be limited to a select, carefully trained group of specialists. Today, nearly everyone is able to operate computers at some level.

Effective training in medical ultrasound requires both clinical knowledge (understanding of anatomy, physiology, and pathology) and scanning skills (psycho-motor skills, which are the integration of motion and the mental processes of recognizing anatomic structures in 3D from the 2D images). While both clinical knowledge and scanning skills are essential, the former is often emphasized at the expense of the latter because clinical knowledge can be delivered cost effectively and in flexible formats through online courses (including MOOCs), self-study, and in traditional classroom courses. Scanning skills, on the other hand, are acquired through hands-on experience, by examining patients, preferably both healthy and with symptoms, under the guidance of an experienced sonographer. Here, the medical educational enterprise does not currently have the capacity to meet this training need. There are too few scanners available for learners to use. There are too few patients or human subjects in general available for scanning. Last but not least, there are too few qualified instructors who can guide the learning.

There exists a potentially effective approach to overcoming this limitation in delivering scanning skills training: The use of ultrasound training simulators. Simulation provides a controlled and safe practice environment to promote learning. The efficacy of the simulator-based training is well-established. For example, human errors related to airline accidents have decreased in large part due to flight simulator training. Likewise, high-fidelity medical simulations have been shown to be educationally effective, as evidenced by the strong correlation between surgical simulator training and improved outcomes. Several studies have demonstrated the learning value of simulator-based training in diagnostic ultrasound.

Just as HHUS and POCUS have proliferated over the last 15 years, so have ultrasound simulator products. Some training simulators cover multiple clinical specialties, while others are designed for a specific application. Typically, the learner scans a physical manikin with a realistic-looking sham transducer, which produces an image on the display corresponding to the position and orientation of the sham transducer on the manikin, along with an anatomy display of the location of the image plane through the body.

An important component of the simulator design is the degree to which the simulator provides structured learning with guidance, interaction, and assessment. While all simulators include educational modules, only a few offer self-paced learning and competence verification. All in all, today’s ultrasound simulators are sophisticated devices that are capable of meeting training needs on basic and even intermediate levels. However, because the purchase price is sufficiently high (from $10K to more than $100K) sonography programs and simulation centers at larger hospitals are typically the only facilities able to acquire this technology.

When the medical community is ready to embrace ultrasound as an imaging modality of first choice for doctors from all specialties, I am convinced that technological innovation will lead to affordable, yet customizable and realistic training simulators. In particular, what is needed are portable and lightweight simulators that run on ordinary, modern PC/laptops, making personal ownership of a simulator possible as well as allowing medical schools to purchase such simulators in large quantities. For individualized training, it is essential that the simulator be task-based and able to verify the acquired skills level. To deliver the best realism, the image material should preferably be acquired directly from human subjects, and to provide the optimal development and assessment of psychomotor skills, the scanning practice on the simulator should resemble actual patient scanning as closely as possible. Such low-cost training simulators can lay the groundwork for building up such ultrasound skills both among practicing specialists and students enrolled in medical schools.

Have you/do you use simulators in your ultrasound training? What are the advantages or disadvantages? What would make simulation training better? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Peder C. Pedersen is Professor of Electrical and Computer Engineering at Worcester Polytechnic Institute.