Puzzle Solver

During the 2016 AIUM Annual Convention, Michael Kolios, PhD, was awarded the Joseph H. Holmes Basic Science Pioneer Award. We asked him a few questions about the award,November 11, 2015 what interests him, and the future of medical ultrasound research. This is what he had to say.

  1. What does being named the Joseph H. Holmes Basic Science Pioneer Award winner mean to you?
    It means a lot to me to be recognized by my peers in this manner. It motivates me to work even harder to contribute more to the community.  I have been associated with the AIUM for a long time and have thoroughly enjoyed interacting with all the members over the years. When I peruse the list of the previous Joseph H. Holmes Basic Science Pioneer Awardees and look at their accomplishments, I feel quite humbled by being the recipient of this award, and hope one day to match their contributions to the field.
  1. What gets you excited the most when it comes to research?
    I get excited when I generate/discuss new ideas, participate in the battle of new and old ideas, and the immensely complex detective work that is required to prove or disprove these new ideas. I thoroughly enjoy the interactions with all my colleagues and trainees that join me in this indefatigable and never-ending detective work, as solving one puzzle almost always creates many new ones. This is what I’ve encountered in the last 2 decades while probing basic questions on the propagation of ultrasound waves in tissue, and how different tissue structures scatter the sound. Finally, I get very excited when I try to think about how to use the basic science knowledge generated from this research to inform clinical practice, and envisioning the day this will potentially make a difference in the lives of people.
  1. How can we encourage more ultrasound research?
    We need to provide the resources to people in order to do the research in ultrasound. Most funding agencies are stretched to the limit and success rates are sometimes in the single digits. This makes it very challenging to do research in general, including ultrasound research. Therefore, pooling resources and providing environments where ultrasonic research can excel will partially help—creating/promoting/maintaining centers for ultrasound research. This can also be promoted through networking and professional societies, such as the AIUM.Another thing to do to encourage more ultrasound research is by demonstrating the clinical impact of ultrasound and how it could be used to save the lives of patients. Only through the close collaboration of basic scientists/engineers with clinicians/clinician-scientists/sonographers can this be achieved. Developments in therapeutic ultrasound for example are very exciting, and have recently attracted the attention of both public and private funding agencies with many success stories. Moreover, providing seed money through opportunities such as the ERR (Endowment for Education and Research) is a step in the right direction—to give people the opportunity to pursue their ideas in the field of ultrasound research.
  1. What new or upcoming research has you most intrigued?
    While I spent a lot of time trying to understand ultrasound scattering, and how changes in tissue morphology influence this scattering, I’m currently dedicating most of my time to the new field called photoacoustic imaging. It is known that conventional clinical ultrasound has relatively poor soft tissue contrast, but in photoacoustic imaging light is used to generate ultrasound. These ultrasound waves, created when light is absorbed by tissue, provides exciting results that allow not only probing tissue anatomy, but also function in ways that not many other modalities can. After the light is absorbed and the waves initiated, everything we know about ultrasound applies—and in fact we can use the same ultrasound instrumentation to create images. I expect this imaging modality to have clinical impact in the near future.
  1. You are well accomplished within the medical ultrasound research community, but when you were young what did you want to be when you grew up?
    When I was young I wanted to be firstly an astronaut, then a philosopher, pondering basic questions and fundamental problems in nature. I ended up studying physics and its applications in medicine. It has been a highly rewarding choice!
  1. If you were presenting this award at the 2017 AIUM Annual Convention, who would you like to see receive it and why?
    I’d like to see someone that has contributed to ultrasound, with work spanning from the basic science/engineering to clinical application! It would also be encouraging to see the next recipient being a woman or minority, reflecting the true diversity from which new ideas come, and representing a constituency for which society has relatively recently given the opportunity to contribute to science in a meaningful and sustained manner.

Who would you like to see win an AIUM award? What ideas do you have to increase the interest in and funding for research? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Michael Kolios, PhD, is Professor in the Department of Physics, and Associate Dean of Science, Research and Graduate Studies at Ryerson University.

Research in Ultrasound: Why We Do It

“Medicine, the only profession that labors incessantly to destroy the reason for its existence.” –James Bryce

We all know the important medical discoveries clinical research has given us over time. stamatia-v-destounis-md-facrYou could even make the case that the high standards of care we have today are built on centuries of research.

The world of medical ultrasound is no stranger to clinical research—dating back to the early work of transmission ultrasound of the brain. This work was especially important, as it was the first ultrasonic echo imaging of the human body.

Since then, research has brought about gray scale imaging, better transducer design, better understanding of beam characteristics, tissue harmonics and spatial compounding, and the development of Doppler. All of these research developments, as well as many others, were highly significant and have lead us to today’s high-quality handheld, real-time ultrasound imaging.

For me, the biggest and most important developments were and have been in breast ultrasound. In 1951, the research of Wild and Neal discovered and qualified the acoustic characteristics of benign and malignant breast tumors through use of an elementary high-frequency (15-MHz) system that produced an A-mode sonogram. These researchers published the results of additional ultrasound examinations in 21 breast tumors: 9 benign and 12 malignant, with two of the cases becoming the first 2-dimensional echograms (B-mode sonograms) of breast tissue ever published.

It is research that leads to landmark publications that change the way we practice. The ACRIN 6666 trial led by Dr Wendie Berg and her co-authors evaluated women at elevated risk of breast cancer with screening mammography compared with combined screening mammography and ultrasound. This pivotal study demonstrated that adding a single screening ultrasound to mammography can increase cancer detection in high-risk women. In our current environment this is even more relevant, as breast density notification legislation is being adopted in states across the country. With the legislation, patients with dense breast tissue are often being referred for additional screening services, with ultrasound most often being the screening modality of choice.

Screening ultrasound is an area on which I have focused much of my own research. I practice in New York State, where our breast density notification legislation became effective in January 2013. I have been interested in reviewing my practice’s experience with screening ultrasound in these patients to evaluate cancer detection and biopsy rates. My initial experience was published in the Journal of Ultrasound in Medicine in 2015, and supported what other breast screening ultrasound studies have found, an additional cancer detection rate of around 2 per 1000. Through my continued evaluation of our screening breast ultrasound program, I have found a persistently higher cancer detection rate by adding breast ultrasound to the screening mammogram–which is of great importance to all breast imagers, as we are finding cancers that were occult on mammography.

Participating in valuable research is important to me and my colleagues because part of our breast center’s mission is to investigate new technologies and stay on the cutting-edge by offering the latest and greatest to our patients. Participating in clinical research provides us important experience with new technology, and an opportunity to evaluate firsthand new techniques, new equipment, and new ideas and determine what will most benefit our patients. This is what I find the most important aspect of research, and why I do it; to be able to find new technologies that improve upon the old, to continue to find breast cancers as early as possible, and to improve patient outcomes.

Why is medical research/ultrasound research so important to you? What research questions would you like to see answered? Share your thoughts and ideas here and on Twitter: @AIUM_Ultrasound.

Stamatia Destounis, MD, FACR, is an attending radiologist and managing partner at Elizabeth Wende Breast Clinic. She is also Clinical Professor of Imaging Sciences at the University of Rochester School of Medicine & Dentistry.

Greater Trochanteric Pain Syndrome

In a study funded in part by AIUM’s Endowment for Education and Research, Jon Jacobson, MD, and his team from the University of Michigan set out to determine the effectiveness of percutaneous tendon eer_logo_textsidefor treatment of gluteal tendinosis. The full results of this study were recently published in the Journal of Ultrasound in Medicine.

Greater trochanteric pain syndrome is a condition that most commonly affects middle-aged and elderly women but can also affect younger, and more active, individuals. It has been shown that the underlying etiology for greater trochanteric pain syndrome is most commonly tendinosis or a tendon tear of the gluteus medius, gluteus minimus, or both at the greater trochanter and that tendon inflammation (or tendinitis) is not a major feature. This condition can be quite debilitating and often does not respond to conservative management.

Treatment of greater trochanteric pain syndrome should therefore include treatment of the underlying tendon condition. Ultrasound-guided percutaneous needle fenestration (or tenotomy) has been used to effectively treat underlying tendinosis and tendon tears, including tendons about the hip and pelvis. Similarly, autologous platelet-rich plasma (PRP), often combined with tendon fenestration, has been used throughout the body to treat tendinosis and tendon tears.

Although studies have shown patient improvement with PRP treatment, the true effectiveness of this treatment compared to other treatments remains uncertain. Although percutaneous ultrasound-guided tendon fenestration has been shown to be effective about the hip and pelvis, there are no data describing the use of PRP for treatment of gluteal tendons, and there is no study comparing the effectiveness of each treatment for gluteal tendinopathy. The purpose of this blinded prospective clinical trial was to compare ultrasound-guided tendon fenestration and PRP for treatment of gluteus tendinosis or partial-thickness tears in greater trochanteric pain syndrome.

We designed a study in which patients with symptoms of greater trochanteric pain syndrome and ultrasound findings of gluteal tendinosis or a partial tear (<50% depth) were blinded and treated with ultrasound-guided fenestration or autologous PRP injection of the abnormal tendon. Pain scores were recorded at baseline, week 1, and week 2 after treatment. Retrospective clinic record review assessed patient symptoms.

To break this down a little further, the study group consisted of 30 patients (24 female), of whom 50% were treated with fenestration and 50% were treated with PRP. The gluteus medius was treated in 73% and 67% in the fenestration and PRP groups, respectively. Tendinosis was present in all patients. In the fenestration group, mean pain scores were 32.4 at baseline, 16.8 at time point 1, and 15.2 at time point 2. In the PRP group, mean pain scores were 31.4 at baseline, 25.5 at time point 1, and 19.4 at time point 2. Retrospective follow-up showed significant pain score improvement from baseline to time points 1 and 2 (P < .0001) but no difference between treatment groups (P = .1623). There was 71% and 79% improvement at 92 days (mean) in the fenestration and PRP groups, respectively, with no significant difference between the treatments (P >.99).

These results led us to conclude that both ultrasound-guided tendon fenestration and PRP injection are effective for treatment of gluteal tendinosis, showing symptom improvement in both treatment groups.

What is your experience with treating greater trochanteric pain syndrome? Are you familiar with the Endowment for Education and Research?  Share your thoughts and ideas here and on Twitter: @AIUM_Ultrasound.

Jon A. Jacobson, MD, is Professor of Radiology, Director of the Division of Musculoskeletal Radiology, Assistant Medical Director of Northville Health Center, and Medical Director of Taubman Radiology within the University of Michigan Health System.

5 Questions with Dr Lee

Every year, the AIUM William J. Fry Memorial Lecture Award recognizes an AIUM member who has significantly contributed in his or her particular field to the scientific progress of medical ultrasound.

Wesley Lee MDAt the 2015 AIUM Convention, Wesley Lee, MD received this award.

  1. What did being named the William J. Fry Memorial Lecture Award winner mean to you?

The William J. Fry Memorial Lecture Award was an unexpected surprise because all of my professional accomplishments simply reflect who I am and what I enjoy doing.  I am truly honored and feel privileged to have received this special recognition among my special friends and colleagues.

  1. You have been involved with the AIUM for more than 3 decades. From your perspective, how has the AIUM changed over that span?

Over the past 3 decades, I have seen enthusiastic growth within our membership and more diversified multidisciplinary collaborations between many specialties for various areas of diagnostic and therapeutic ultrasonography. The AIUM has certainly raised the bar for technical and clinical practice standards that are now often developed with other professional organizations. The AIUM plays an pivotal role for political advocacy involving important issues that may impact how cost-effective and health care is delivered.

  1. You have written extensively and currently serve on the editorial board for Ultrasound in Obstetrics and Gynecology, as well as deputy editor of the Journal of Ultrasound in Medicine. Based on what you are seeing and writing, where is medical ultrasound headed?

The quality of medical ultrasound research has improved with the use of standard writing guidelines and detailed imaging protocols, as well as the application of evidenced-based medicine. We are seeing many novel applications of ultrasound technology that can now be delivered or used in combination with other imaging modalities in our patients. The Journal of Ultrasound in Medicine has become an important international resource with submissions from all over the world.  Original research articles constitute approximately 60% of the total papers submitted.

  1. What medical ultrasound question or concern keeps you up at night?

We use ultrasound imaging technology every day in our clinical practices. I am constantly trying to understand how diagnostic ultrasonography practice can be improved for patient care through development/application of new technologies, better education, and innovative research initiatives.

  1. Finish this sentence…”It’s best to use ultrasound first when…”

It’s best to use ultrasound first when providing obstetrical care to pregnant women because of its cost-effectiveness as a screening tool, established benefit for the prenatal diagnosis of fetal anomalies/complications, and long safety record in pregnant women.

Do you have any questions for Dr Lee? Comment below or let us know on Twitter: @AIUM_UltrasoundLearn more about the AIUM Awards Program at www.aium.org/aboutUs/awards.aspx.

Wesley Lee, MD, is Co-Director, Texas Children’s Fetal Center at Texas Children’s Hospital Pavilion for Women. He is also Professor, Department of Obstetrics and Gynecology; Section Chief, Women’s and Fetal Imaging; and Director of Fetal Imaging Research all at Baylor College of Medicine.

.