Ultrasound-Guided Musculoskeletal Injections

I began using Musculoskeletal (MSK) ultrasound (US) in 2010. It has been incredibly exciting to observe the growth of applications of this amazing technology for both myself personally as well as for the entire MSK US practicing community. MSK US has become an integral part of my Sports Medicine practice and I certainly anticipate its’ role to continue to expand and be able to provide cutting-edge medical care to my patients.IMG_8265

There is great variability with which MSK US is used among practitioners. Some providers do complete diagnostic scans of the shoulder, for example, to evaluate the extent of a potential rotator cuff tear to guide with potential surgical decision making, while others perform selective nerve blocks and finally, some practitioners simply use it to assist with the accuracy of various MSK joint and soft tissue injections. I would like to illustrate to all of you the applications for which I most commonly use MSK US to improve patient care.

Probably the most common application for which I use MSK US is to assist with the accuracy of joint and soft tissue injections. It has been clearly documented that MSK US improves the accuracy of certain MSK injections. While I do not use MSK US for all injections, ie, simple knee intra-articular and shoulder sub-acromial injection, I routinely employ MSK US to assist with certain injections. Common joints and soft tissue areas for which I employ MSK US for either cortisone or pro-inflammatory injections like Platelet Rich Plasma (PRP) are:

Shoulder: Glenohumeral and acromioclavicular joint and long head biceps tendon sheath

Hip: Femoroacetabular, hamstring origin (tendon or bursa), mid-portion hamstring, pubic symphysis, gluteal tendons and bursa, iliopsoas bursa and tendon

Knee: Pes anserine and iliotibial bursae, patella and quadriceps tendons, Baker’s cyst aspiration

Wrist: Triangular fibro cartilage complex (TFCC), various wrist extensor and flexor tendons, aspirate ganglion cysts, numerous hand and wrist joints

Elbow: Lateral and medial epicondyle area, triceps insertion, olecranon bursitis, distal biceps and intra articular

Ankle: Achilles, tibialis posterior, peroneal tendons, numerous foot and ankle joints, plantar fascia

Back: Sacroiliac joint

I would also like to illustrate some interesting recent cases supporting the utility of MSK US in a Sports Medicine practice.

I am consulted numerous times a week by my orthopedic surgeon colleagues for diagnostic joint injections. Oftentimes, a patient’s hip pain may be multifactorial or difficult to specifically isolate. I will perform an intra-articular injection to see if it alleviates that patient’s pain, thus identifying that the area in which I placed the injection as the pain generating location. Correct identification of the pain generating source will help to assist with treatment considerations.

I also recently had a patient with greater than 1 year of hip pain. He had seen 8 different providers and had an extensive workup with imaging and injections only to have continued pain. He had hip joint and hamstring origin injections and felt no improvement. I was able to use the US to identify and isolate the obturator internus as the source of his pain by providing a diagnostic injection. This injection helped to make the appropriate diagnosis and ultimately influenced treatment.

Last month, an orthopedic surgeon asked me to evaluate a patient for refractory symptoms from a Baker’s cyst. The cyst persisted despite multiple intra articular-injections. I evaluated the cyst with US and noted that it was multilobulated. I was able to specifically aspirate each of the loculations and the patient has remained symptom-free.

I was also asked to see one of our varsity basketball players for refractory lateral knee pain. His athletic trainer was treating him with rehabilitation and multiple modalities but the pain persisted and was affecting the athletes’ ability to play. I was able to identify an inflamed Iliotibial band bursa with the US and subsequently inject it. He became pain-free and was able to play in that weeks’ game as well as the rest of the season.

Another exciting application of MSK US that has piqued my interest recently is the use of the US to assist with appropriately identifying the compartments of the lower extremity for chronic exertional compartment testing. I can employ the US to guarantee that I am in the appropriate anatomic compartment for testing.

With any new technology, the application and utility of MSK US can be user-dependent and it can be affected by a somewhat steep learning curve. MSK US curriculums are frequently being added to Sports Medicine fellowships to train some of the future leaders of medicine. I certainly anticipate that this technology with continue to evolve and its’ treatment applications will continue to expand.

How do you use MSK US? How has it improved your practice? Comment below or let us know on Twitter: @AIUM_Ultrasound.

Bryant Walrod, MD, CAQSM, is Assistant Professor: Clinical at Ohio State University, is Team Physician for the Ohio State Athletics, and practices at The Ohio State University Wexner Medical Center.

Greater Trochanteric Pain Syndrome

In a study funded in part by AIUM’s Endowment for Education and Research, Jon Jacobson, MD, and his team from the University of Michigan set out to determine the effectiveness of percutaneous tendon eer_logo_textsidefor treatment of gluteal tendinosis. The full results of this study were recently published in the Journal of Ultrasound in Medicine.

Greater trochanteric pain syndrome is a condition that most commonly affects middle-aged and elderly women but can also affect younger, and more active, individuals. It has been shown that the underlying etiology for greater trochanteric pain syndrome is most commonly tendinosis or a tendon tear of the gluteus medius, gluteus minimus, or both at the greater trochanter and that tendon inflammation (or tendinitis) is not a major feature. This condition can be quite debilitating and often does not respond to conservative management.

Treatment of greater trochanteric pain syndrome should therefore include treatment of the underlying tendon condition. Ultrasound-guided percutaneous needle fenestration (or tenotomy) has been used to effectively treat underlying tendinosis and tendon tears, including tendons about the hip and pelvis. Similarly, autologous platelet-rich plasma (PRP), often combined with tendon fenestration, has been used throughout the body to treat tendinosis and tendon tears.

Although studies have shown patient improvement with PRP treatment, the true effectiveness of this treatment compared to other treatments remains uncertain. Although percutaneous ultrasound-guided tendon fenestration has been shown to be effective about the hip and pelvis, there are no data describing the use of PRP for treatment of gluteal tendons, and there is no study comparing the effectiveness of each treatment for gluteal tendinopathy. The purpose of this blinded prospective clinical trial was to compare ultrasound-guided tendon fenestration and PRP for treatment of gluteus tendinosis or partial-thickness tears in greater trochanteric pain syndrome.

We designed a study in which patients with symptoms of greater trochanteric pain syndrome and ultrasound findings of gluteal tendinosis or a partial tear (<50% depth) were blinded and treated with ultrasound-guided fenestration or autologous PRP injection of the abnormal tendon. Pain scores were recorded at baseline, week 1, and week 2 after treatment. Retrospective clinic record review assessed patient symptoms.

To break this down a little further, the study group consisted of 30 patients (24 female), of whom 50% were treated with fenestration and 50% were treated with PRP. The gluteus medius was treated in 73% and 67% in the fenestration and PRP groups, respectively. Tendinosis was present in all patients. In the fenestration group, mean pain scores were 32.4 at baseline, 16.8 at time point 1, and 15.2 at time point 2. In the PRP group, mean pain scores were 31.4 at baseline, 25.5 at time point 1, and 19.4 at time point 2. Retrospective follow-up showed significant pain score improvement from baseline to time points 1 and 2 (P < .0001) but no difference between treatment groups (P = .1623). There was 71% and 79% improvement at 92 days (mean) in the fenestration and PRP groups, respectively, with no significant difference between the treatments (P >.99).

These results led us to conclude that both ultrasound-guided tendon fenestration and PRP injection are effective for treatment of gluteal tendinosis, showing symptom improvement in both treatment groups.

What is your experience with treating greater trochanteric pain syndrome? Are you familiar with the Endowment for Education and Research?  Share your thoughts and ideas here and on Twitter: @AIUM_Ultrasound.

Jon A. Jacobson, MD, is Professor of Radiology, Director of the Division of Musculoskeletal Radiology, Assistant Medical Director of Northville Health Center, and Medical Director of Taubman Radiology within the University of Michigan Health System.